K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: ΔOED cân tại O

mà OH là trung tuyến

nên OH vuông góc DE

góc OHA=góc OBA=90 độ

=>O,H,B,A cùng thuộc 1 đường tròn

2: Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB/AE=BD/EB

=>AB*EB=AE*BD

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

5 tháng 2 2022

TK

https://lazi.vn/edu/exercise/cho-nua-duong-tron-o-duong-kinh-ab-2r-dung-duong-thang-d-la-tiep-tuyen-cua-a-tren-cung-ab-lay-diem-c

25 tháng 8 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Tam giác ACO vuông tại A ⇒ Tâm đường tròn ngoại tiếp tam giác ACO là trung điểm của CO (1)

Xét tam giác AMB có:

I là trung điểm của AM

O là trung điểm của AB

⇒ IO là đường trung bình của tam giác AMB

⇒ IO // AM

Mà AM ⊥ MB ⇒ IO ⊥ MB

Tam giác CIO vuông tại I ⇒ Tâm đường tròn ngoại tiếp tam giác CIO là trung điểm của CO (2)

Từ (1) và (2) ⇒ 4 điểm A, I, C, O cùng thuộc một đường tròn

a: góc AEB=1/2*180=90 độ

góc FIB+góc FEB=180 độ

=>FIBE nội tiếp

b: góc ACB=1/2*180=90 độ

=>AC vuông góc DB

Xét ΔCAF và ΔCEA có

góc CAF=góc CEA

góc ACF chung

=>ΔCAF đồng dạng với ΔCEA

=>CA^2=AF*AE
Xét ΔDAB vuông tại D có AC vuông góc DB

nên CA^2=CD*CB=AF*AE

14 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Tam giác CMA vuông tại M có MK là trung tuyến

⇒ MK = KA = KC

Xét Δ KAO và Δ KMO có:

KA = KM

KO là cạnh chung

AO = MO ( = bán kính (O))

⇒ Δ KAO = Δ KMO (c.c.c)

⇒ ∠(KAO) = ∠(KMO)

Mà ∠(KAO) =  90 0  ⇒ ∠(KMO) = 90 0

⇒ KM là tiếp tuyến của (O)

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

23 tháng 5 2021

undefined

a) Tứ giác ACEI có: $\angle ACE+\angle EIA=90+90=180^o$ nên là tứ giác nội tiếp.

(Câu này dễ, bạn tự giải thích.)

b) Do AFEM nội tiếp nên $\angle EMB=\angle EFA=90-\angle FAB=90-\angle CAB=\angle EBM.$

Từ đó tam giác EBM cân tại E.

c) Tâm đường tròn ngoại tiếp (AEF) không chạy trên đường tròn cố định bạn nhé. Nó chạy trên đường trung trực đường thẳng AM. Ta chứng minh nó cố định. Mà A cố định nên chỉ cần chứng minh M cố định.

Từ câu b thu được I là trung điểm MB. Vậy M cách I một khoảng IB không đổi. Tức là M cố định.

Từ đó thu được đpcm.

Ps: Câu c không chắc.