K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIHM và ΔIEM có

IH=IE

góc HIM=góc EIM

IM chung

=>ΔIHM=ΔIEM

b: ΔIHM=ΔIEM

=>góc HMI=góc EMI

c: IH=IE

MH=ME

=>IM là trung trực của HE

=>IM vuông góc HE

3 tháng 1 2020

P N M H K I Q

GT

 △MNP cân tại P.   MN = 6cm,   NPI = MPI = NPM/2 ,  (I \in  MN)

 IK ⊥ PM ,  IH ⊥ PN . IQ = IM 

KL

 a, △MPI = △NPI

 b, HIP = PIK

 c, △MIQ vuông cân. MQ = ?

 d, Nếu PKH đều, điều kiện △MNP

Bài làm:

a,  Vì △MNP cân tại P => PN = PM

Xét △NPI và △MPI

Có: NP = MP (gt)

      NPI = MPI (gt)

    PI là cạnh chung

=> △NPI = △MPI (c.g.c)

b, Xét △HPI vuông tại H và △KPI vuông tại K

Có: PI là cạnh chung

   HPI = KPI (gt)

=> △HPI = △KPI (ch-gn)

=> HIP = PIK (2 góc tương ứng)

Mà IP nằm giữa IH, IK

=> IP là phân giác KIH

c, Ta có: PIN = MIQ (2 góc đối đỉnh)

Mà PIN = 90o (gt)

=> MIQ = 90o    (1) 

Xét △MIQ có: IQ = IM => △MIQ cân tại I   (2)

Từ (1), (2) => △MIQ vuông cân tại I

Vì △NPI = △MPI (cmt) 

=> IN = IM (2 cạnh tương ứng)

Mà MN = IN + IM = 6 (cm)

=> IN = IM = 6 : 2 = 3 (cm)

Mà IM = IQ 

=> IM = IQ = 3 (cm)

Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)

=> 32 + 32 = MQ2

=> 9 + 9 = MQ2

=> 18 = MQ2

=> MQ = \(\sqrt{18}=3\sqrt{2}\)

d, Để △PHK đều <=> HPK = PKH = KHP = 60o

=> △MNP có NPM = 60o mà △MNP cân

=> △MNP đều

Vậy để △PKH đều <=> △MNP đều

a: Xét ΔOHI vuông tại H và ΔOKI vuông tại K có

OI chung

góc HOI=góc KOI

=>ΔOHI=ΔOKI

b: ΔOHI=ΔOKI

=>IH=IK

22 tháng 12 2021

a: Xét ΔACI và ΔMCI có

CA=CM

\(\widehat{ACI}=\widehat{MCI}\)

Do đó: ΔACI=ΔMCI

1 tháng 12 2023

Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:

a) Chứng minh tam giác AIB = tam giác AIC:

Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.

b) Chứng minh AI là tia phân giác của góc BAC:

Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.

c) Chứng minh IA là tia phân giác của góc HIK:

Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAIH=ΔAIK

=>\(\widehat{HIA}=\widehat{KIA}\)

=>IA là phân giác của \(\widehat{HIK}\)