\(A=\left(2017-\frac{1}{4}-\frac{2}{5}-\frac{3}{6}-\frac{4}{7}-...-\frac{2017}{2020}\right):\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Tính giúp mình với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2017 - ( 1 -\(\frac{3}{4}\)) - ( 1 - \(\frac{3}{5}\)) -...- ( 1 - \(\frac{3}{2020}\)) : Còn lại
A = 2017 - 1 + \(\frac{3}{4}\) - 1 + \(\frac{3}{5}\) -... - 1 +\(\frac{3}{2020}\) : Còn lại
A = 0 + \(\frac{3}{4}\)+\(\frac{3}{5}\)+\(\frac{3}{2020}\) : CÒn lại
A = 3 x ( \(\frac{1}{4}\)+\(\frac{1}{5}\)+...+ \(\frac{1}{2020}\)) : ( \(\frac{1}{4x5}\)+\(\frac{1}{5x5}\) + ... )
A = 3 : \(\frac{1}{5}\)
A = 15
= 15 nha
đúng 1000000000000000000000000000000% đó cái này ở violympic cấp tỉnh lớp 5 đó....
* Xét số bị chia, ta có:
(2017 - 1) : 1 + 1 = 2017
(2020 - 4): 1 + 1 = 2017
Suy ra: Số hạng thứ hai của hiệu có số số hạng là: 2017
Suy ra: Ta có thể chia số 2017 thành 2017 số 1 để có:
2017 - 1/4 - 2/5 - 3/6 - 4/7 + …. - 2017/2020
= 1 - 1/4 + 1 - 2/5 + 1 - 3/6 + 1 - 4/7 + …. + 1 - 2017/2020
= 3/4 + 3/5 + 3/6 + 3/7 + …. + 3/2020 =
3 x (1/4 + 1/5 + 1/6 + 1/7 + …. 1/2020) (1)
* Xét số chia, ta có:
1/20 = 1/(4 x 5)
1/25 = 1/(5 x 5)
1/30 = 1/(6 x 5)
…
1/10100 = 1/(2020 x 5)
Suy ra:
1/20 + 1/25 + 1/30 + 1/35 + … + 1/10100
1/(4 x 5) + 1/25 + 1/30 + 1/35 + … + 1/(2020 x5 )
= 1/5 x (1/4 + 1/5 + 1/6 + 1/7 + …. + 1/2020) (2)
Ta thấy số bị chia (1) và số chia (2) có thừa số giống nhau là: (1/4 + 1/5 + 1/6 + 1/7 + …. 1/2020)
Suy ra: B = 3 : 1/5 = 15
Ta có: 2017 -1/4 -2/5 -3/6 -... -2017/2020
= (1-1/4)+(1-2/5)+(1-3/6)+...+(1-2017/2020)
= 3/4 + 3/5 + 3/6 +...+ 3/2020
= 15 (1/20+ 1/25+ 1/30+...+ 1/10100)
Vậy B = 15.
Chúc bạn học tốt.
Hello Triệu Mẫn điên .Tui là Nguyên 6n1^^
Tui đang suy nghĩ
Tui biết làm nhưng không nói
chỉ nói kết quả bằng 10
Đặt \(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2010}\)
\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)
Ta có:
\(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2020}\)
\(A=1-\frac{1}{4}+1-\frac{2}{5}+1-\frac{3}{6}+...+1-\frac{2017}{2020}\)
\(A=\frac{3}{4}+\frac{3}{5}+\frac{3}{6}+...+\frac{3}{2020}\)
\(A=3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)
\(B=\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\)
\(B=\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(\frac{A}{B}=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}{\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}=\frac{3}{\frac{1}{5}}=15\)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
15 đó mình thi rồi
Mình thi rồi, mình biết là 15 nhưng mình cần CÁCH GIẢI !