Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{a}=2\overrightarrow{i}\) , \(\overrightarrow{b}=-3\overrightarrow{j}\), \(\overrightarrow{c}=3\overrightarrow{i}-4\overrightarrow{j}\)
Phân tích vecto c theo hai vecto a và vecto b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\overrightarrow v = \left( {0; - 7} \right)\)nên \(\overrightarrow v = 0\overrightarrow i + \left( { - 7} \right)\overrightarrow j = - 7\overrightarrow j \)
b) Vì B có tọa độ là (-1; 0) nên \(\overrightarrow {OB} = \left( { - 1;{\rm{ }}0} \right)\). Do đó: \(\overrightarrow {OB} = \left( { - 1} \right)\overrightarrow i + 0\overrightarrow j = - \overrightarrow i \)
Lời giải:
$\overrightarrow{i}=(1,0), \overrightarrow{j}=(0,1)$
$\Rightarrow \overrightarrow{i}-\overrightarrow{j}=(1-0,0-1)=(1,-1)$
Bài 2:
$\overrightarrow{a}+2\overrightarrow{b}=(3+2.-1, -4+2.2)=(1, 0)$
a) Vì \(\overrightarrow a = 3\overrightarrow i \)nên \(\overrightarrow a = \left( {3;0} \right)\)
b) Vì \(\overrightarrow b = - \overrightarrow j \)nên \(\overrightarrow b = \left( {0; - 1} \right)\)
c) Vì \(\overrightarrow c = \overrightarrow i - 4\overrightarrow j \)nên \(\overrightarrow c = \left( {1; - 4} \right)\)
d) Vì \(\overrightarrow d = 0,5\overrightarrow i + \sqrt 6 \overrightarrow j \)nên \(\overrightarrow d = \left( {0,5;\sqrt 6 } \right)\)
Tham khảo:
a) Ta có: \(\overrightarrow b = \left( {4; - 1} \right)\) và \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)
\( \Rightarrow 2\;\overrightarrow a - \overrightarrow b = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)
Lại có: M (-3; 6), N(3; -3)
\( \Rightarrow \overrightarrow {MN} = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)
Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN} = 3\left( {2\;\overrightarrow a - \overrightarrow b } \right)\)
b) Ta có: \(\overrightarrow {OM} = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON} = \left( {3; - 3} \right)\) (do N (3; -3)).
Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).
Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.
Vậy chúng không thẳng hàng.
c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM} = \overrightarrow {PN} \).
Do \(\overrightarrow {OM} = \left( { - 3;6} \right),\;\overrightarrow {PN} = \left( {3 - x; - 3 - y} \right)\) nên
\(\overrightarrow {OM} = \overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 = - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 9\end{array} \right.\)
Vậy điểm cần tìm là P (6; -9).
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
a) Ta có: \({\overrightarrow i ^2} = {\left| {\overrightarrow i } \right|^2} = 1;{\overrightarrow j ^2} = {\left| {\overrightarrow j } \right|^2};\overrightarrow i .\overrightarrow j = 0\)(vì \(\overrightarrow i \bot \overrightarrow j \) )
b) Ta có: \(\overrightarrow u .\overrightarrow v = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j } \right).\left( {{x_2}\overrightarrow i + {y_2}\overrightarrow j } \right) = {x_1}{x_2}.{\overrightarrow i ^2} + {x_1}{y_2}.\left( {\overrightarrow i .\overrightarrow j } \right) + {y_1}{x_2}.\left( {\overrightarrow j .\overrightarrow i } \right) + {y_1}{y_2}.{\overrightarrow j ^2} = {x_1}{x_2} + {y_1}{y_2}\)
a) Tọa độ của vectơ \(\overrightarrow a \) là \(\left( {2;7} \right)\)
b) Tọa độ của vectơ \(\overrightarrow b \) là \(\left( { - 1;3} \right)\)
c) Tọa độ của vectơ \(\overrightarrow c \) là \(\left( {4;0} \right)\)
d) Tọa độ của vectơ \(\overrightarrow d \) là \(\left( {0; - 9} \right)\)
Giả sử `\vec{c}=m\vec{a}+n\vec{b}`
`<=>(3;-4)=m(2;0)+n(0;-3)`
`<=>(3;-4)=(2m;-3n)`
`<=>{(m=3/2),(n=4/3):}`
`=>\vec{c}=3/2\vec{a}+4/3\vec{b}`