Cho tam giác ABC cân tại A . Đường cao BD và CE cắt nhau tại H b) Chứng minh AH vuông góc BC c) Biết , Biết AB=70° Tính số đo của góc BHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tam giác ABC có:
BD là đường cao của ABC (gt)
CE là đường cao của ABC (gt)
mà BD cắt CE tại H (gt)
=>AH là đường cao thứ 3
=>AH vuông góc BC
c) Ta có: Tam giác ABC cân tại A (gt)
=> góc ABC = góc ACB = 70o
Xét tam giác ABC CÓ
ABC + ACB + BAC =180 (tổng 3 góc trong tam giác)
70 + 70 + BAC = 180
BAC = 180 - 140 = 40o
Ta có: Tam giác ABC cân tại A, đường cao AH (gt)
=>AH là đường phân giác của BAC
=>BAH = CAH = BAC : 2 =40 : 2= 200
Xét tam giác EAH và tam giác DAH có;
EAH = DAH =200
AH chung
=>EAH = DAH(ch_gn)
=> AHE = AHD=90-20=60o( 2 góc tương ứng)
Ta có: EHD = AHE + AHD = 60 + 60 =1200
=> BHC = EHD =1200 ( 2 góc đối đỉnh)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Nguyễn Diệu Linh.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
cho hình chữ nhật ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB) a)CM tam giac HAD dong dang tam giac CDB b)CM AH.BD=AD.AB c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.
tự kẻ hình
a) xét tam giác BEC và tam giác CDB có
BC chung
BEC=CDB(=90 độ)
ABC=ACB( tam giác ABC cân A)
=> tam giác BEC= tam giác CDB(ch-gnh)
=> BD=CE( hai cạnh tương ứng)
b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)
=> tam giác HBC cân H
c) đặt O là giao điểm của AH với BC
vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)
vì HBC cân H=> HB=HC
xét tam giác HOB và tam giác HOC có
HB=HC(cmt)
HBO=HCO(cmt)
HOB=HOC(=90 độ)
=> tam giác HOB= tam giác HOC(ch-gnh)
=> BO=CO( hai cạnh tương ứng)
=> AH là trung trực của BC
d) xét tam giác CDB và tam giác CDK có
BD=DK(gt)
CDB=CDK(=90 độ)
DC chung
=> tam giác CDB= tam giác CDK(cgc)
=> CBD=CKD( hai cạnh tương ứng)
mà CBD=BCE=> CKD=BCE
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BD=CE
BC chung
Do đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC