K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Rút y từ phương trình số 2 rồi thay vào phương trrình 1 => 3x + m^2x - m = 5 => m^2x+3x=m+5 => x(m^2+3)=m+5

6 tháng 1 2021

\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)

(*) <=> \(9m-m^2y-3y=4\)

<=> \(-y\left(m^2+3\right)=4-9m\) 

Vì \(m^2+3\ge3\) >0 với mọi m

=> m2 + 3 khác 0

=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m

b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)

Để \(x-3y=\dfrac{28}{m^2+3}-3\)

=> \(4m+27-27m+12=28-3m^2+9\)

<=> \(3m^2-3m-20m+20=0\)

<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\) 

<=> \(\left(3m-20\right)\left(m-1\right)=0\)

<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\) 

2 tháng 6 2016

Rút y từ phương trình số 2 rồi thay vào phương trrình 1 => 3x + m^2x - m = 5 => m^2x+3x=m+5 => x(m^2+3)=m+5

2 tháng 6 2016
bạn có thể giải tiếp cho mk nữa đựơc k
21 tháng 3 2020

Câu 1 :

- Để hệ phương trình có nghiệm duy nhất thì : \(\frac{3}{m}\ne-\frac{m}{1}\left(m\ne0\right)\)

=> \(m^2\ne-3\) ( luôn đúng với mọi m )

Câu 2 :

Ta có hệ : \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3\left(3m+2-2y\right)-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}9m+6-6y-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{2m-1-6-9m}{-7}=\frac{-7m-7}{-7}=m+1\\x=3m+2-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)

- Ta có : \(x^2+y^2=10\)

=> \(m^2+2m+1+m^2=10\)

=> \(2m^2+2m-9=0\)

=> \(\left(m\sqrt{2}\right)^2+\frac{2m\sqrt{2}.1}{\sqrt{2}}+\frac{1}{2}-\frac{19}{2}=0\)

=> \(\left(m\sqrt{2}+\frac{1}{\sqrt{2}}\right)^2=\frac{19}{2}\)

=> \(\left[{}\begin{matrix}m\sqrt{2}+\frac{1}{\sqrt{2}}=\sqrt{\frac{19}{2}}\\m\sqrt{2}+\frac{1}{\sqrt{2}}=-\sqrt{\frac{19}{2}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)

Vậy m thỏa mãn điều kiện trên với \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)

22 tháng 4 2020

tks

30 tháng 3 2020

\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)

<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)

<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)

<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)

Vậy với mọi m hệ luôn có nghiệm duy nhất.

13 tháng 2 2020

x=2 y=3

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

9 tháng 1 2019

a. \(\left\{{}\begin{matrix}3x-5y=-9\\5x+2y=16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

b.Để hpt có 1 nghiệm,

Có: \(\dfrac{3}{m}\ne\dfrac{-m}{2}\)

\(\Leftrightarrow-m^2\ne6\left(LĐ\right)\)

c.\(\left\{{}\begin{matrix}4,2-6,6m=-9\\1,4m+13,2=16\end{matrix}\right.\Leftrightarrow m=\dfrac{45}{22}\)