Cho đường thẳng d2 . Viết PTTS của đường thẳng qua và song song với
đường thẳng .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Tọa độ A thỏa mãn:
\(4-3t+2\left(-1+2t\right)-1=0\Rightarrow t=-1\)
\(\Rightarrow A\left(7;-3\right)\)
b. d1 nhận \(\left(-3;2\right)=-1\left(3;-2\right)\) là 1 vtcp nên đường thẳng d nhận \(\left(2;3\right)\) là 1 vtcp và \(\left(3;-2\right)\) là 1 vtpt
Phương trình tham số d: \(\left\{{}\begin{matrix}x=7+2t\\y=-3+3t\end{matrix}\right.\)
Pt tổng quát:
\(3\left(x-7\right)-2\left(y+3\right)=0\Leftrightarrow3x-2y-27=0\)
Đường thẳng d2 nhận \(\left(1;2\right)\) là 1 vtpt nên d3 nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d3: \(\left\{{}\begin{matrix}x=7+2t\\y=-3-t\end{matrix}\right.\)
Pt tổng quát:
\(1\left(x-7\right)+2\left(y+3\right)=0\Leftrightarrow x+2y-1=0\)
Lời giải:
(d) có VTCP là $(-1,1)$. $(\Delta)$ song song với $(d)$ nên cũng có VTCP $(-1,1)$
Mà $(\Delta)$ đi qua $M(-3,5)$ nên có PTTS là:
\(\left\{\begin{matrix} x=-3-t\\ y=5+t\end{matrix}\right.\)
Gọi các đồ thị có CT chung là \(ax+b\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)
a) Tìm toạ độ giao điểm A của hai đường thẳng y = 3x - 2 (d1) và y = (2/3)x (d2):
Để tìm toạ độ giao điểm A của hai đường thẳng, ta có thể giải hệ phương trình sau:y = 3x - 2
y = (2/3)x
(2/3)x = 3x - 2
Giải phương trình này, ta được x = 3/4.Thay x = 3/4 vào phương trình y = (2/3)x, ta được y = (2/3)(3/4) = 7/4.Vậy toạ độ giao điểm A của hai đường thẳng (d1) và (d2) là A(3/4, 7/4).b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng (d3) là y = 3x - 1:
Để viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng (d3), ta có thể sử dụng công thức sau:y - y0 = m(x - x0)
Trong đó, (x0, y0) là toạ độ của điểm A và m là hệ số góc của đường thẳng (d3).
Thay các giá trị này vào công thức trên, ta được:y - 7/4 = 3(x - 3/4)
Sau khi sắp xếp lại các số hạng, ta được phương trình đường thẳng (d) là: y = 3x - 5/4.Đáp án B
Các cách xác định mặt phẳng đúng: 2; 4 ; 8
1. Đi qua 3 điểm phân biệt không thẳng hàng
3. Trong trường hợp 2 đường thẳng chéo nhau thì không thể xác định được mặt phẳng
5. Song song với 2 đường thẳng cắt nhau Có vô số mặt phẳng như vậy.
Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm cho trước
6. Song song với 2 đường thẳng chéo nhau Có vô số mặt phẳng như vậy
Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm cho trước
7. Đi qua 1 điểm và song song với một đường thẳng cho trước. Có vô số mặt phẳng như vậy
a: tọa độ giao điểm M là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
1,\(\overrightarrow{n}\)d=(2;-4)
d: 2(x+1)-4(y-1)=0⇔2x-4y+6=0
2) AM nhỏ nhất khi AM vuông góc với D
⇒\(\overrightarrow{n}\)AM=(4;2)
AM: 4(x+1)+2(y-1)=0⇔4x+2y+2=0
M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1
4x+2y=-2
⇒M(-1/2;0)