Tìm giá trị nhỏ nhất của:
\(\left|x-3\right|+x^2+y^2+1\)
Giúp mình với mình cần gấp!!! Chiều thứ tư mình học rồi!!! Cảm ơn các bạn nhiều!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^2+\left(y-1\right)^2+5\)
ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0x\varepsilon r\\\left(y-1\right)^2\ge0y\varepsilon r\end{cases}}\)
=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x.y \(\varepsilon\) R
=>biểu thức đạt giá trij lớn nhất là 5 tại
\(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}=>\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Để biểu thức đạt nhỏ nhất thì (2x-3)4 đạt nhỏ nhất.
Lại có: (2x-3)4=[(2x-3)2]2 >=0
=> giá trị nhỏ nhất của nó là =0
=> giá trị nhỏ nhất là: -2
Đạt được khi x=3/2
Ta có \(:\)\(\left(x-3,5\right)^2\ge0\forall x\in R\)
Để \(\left(x-3,5\right)^2+1\)nhỏ nhất \(\Leftrightarrow\left(x-3,5\right)^2=0\Rightarrow x=3,5\)
\(\Rightarrow\left(x-3,5\right)^2+1=0+1=1\)
Vậy giá trị nhỏ nhất của \(\left(x-3,5\right)^2+1\)là \(1\)tại \(x=3,5\)
Vì \(\left|y-2\right|\ge0\forall y\)
\(\Rightarrow\left|y-2\right|-3\ge-3\forall y\)
Dấu "=" xảy ra <=> |y - 2| = 0 => y = 2
Vậy GTNN của \(\left|y-2\right|-3\) là - 3 tại y = 2
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2-19\ge-19\forall x\)
Dấu "=" xảy ra <=>\(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy ......................
a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
\(P\ge!x-3!+x^2+1\ge!x^2-x+3!+1\ge!\left(x-\frac{1}{2}\right)^2+\frac{3}{4}!+1\ge\frac{7}{4}\)
Đẳng thức khi y=0 ; x=1/2