Gieo 1 xúc xắc, tính xác suất của các biến cố sau
a)Xuất hiện số chấm là số chính phương
b)Xuất hiện số chấm là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\Leftrightarrow n\left(\Omega\right)=6\)
\(A=\left\{2;5\right\}\)
=>P(A)=2/6=1/3
b: B={1;5}
=>n(B)=2
=>P(B)=2/6=1/3
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{3}{6} = \dfrac{1}{2}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
a:omega={1;2;3;4;5;6}
n(omega)=6
Gọi A là biến cố: Mặt xuất hiện có số chấm là hợp số"
=>A={4;6}
=>n(A)=2
P(A)=2/6=1/3
b: Gọi B là biến cố: "Mặt xuất hiện có số chấm là số nguyên tố"
=>B={2;3;5}
=>n(B)=3
=>P(B)=3/6=1/2
c: Gọi C là biến cố: "Số chấm là số chia 3 dư 1"
=>C={1;4}
=>n(C)=2
P(C)=2/6=1/3
a/Những chấm là số chẵn: \(2;4;6\)
\(\rightarrow\)Có 3 mặt là số chẵn
Xác suất của biến cố A:
\(3:6=\dfrac{1}{2}\)
b/Chấm vừa chia hết cho 2 vừa chia hết cho 3: \(6\)
\(\rightarrow\)Có 1 mặt là số vừa chia hết cho 2 vừa chia hết cho 3
Xác suất của biến cố B:
\(1:6=\dfrac{1}{6}\)
c/Chấm không phải là số nguyên tố và là ước của 24: \(4\) ; \(6\)
\(\rightarrow\)Có 2 mặt không phải là số nguyên tố và là ước của 24
Xác suất của biến cố C:
\(2:6=\dfrac{1}{3}\)
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố A là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố B là biến cố không thể nên biến cố có xác suất là 0.
- Biến cố C là biến cố ngẫu nhiên
Do có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 6 là \(\dfrac{1}{6}\)
a: n(omega)=6
n(A)=3
=>P(A)=3/6=1/2
b: n(B)=5
=>P(B)=5/6
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
=>n(omega)=6
A={1;4}
=>n(A)=2
=>P(A)=2/6=1/3
b: B={3;4;5;6}
=>n(B)=4
=>P(B)=4/6=2/3
a, xác suất mặt xuất hiện có 2 chấm là
1:6=1/6
b, Vì số chấm xuất hiện tối đa là 6 và bé nhất là 1
⇒ xác suất mặt xuất hiện ⋮7 là 0%
c, các số nguyên tố lớn hơn bằng 1 và bé hơn bằng 6 là: 2;3;5 (3 số)
⇒Xác suất mặt chấm là snt là: 3:6=0,5=50%
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có bốn kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 6” là: mặt 1 chấm, mặt 2 chấm, mặt 3 chấm, mặt 6 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{4}{6} = \dfrac{2}{3}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 2” là: mặt 2 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
a: n(omega)=6
A={1;4}
=>n(A)=2
=>P(A)=2/6=1/3
b: B={2;3;5}
=>n(B)=3
=>P(B)=3/6=1/2