Tìm Max B=x3 (2-x5)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KT
1
HP
26 tháng 12 2015
X1+X2=X3+X4=X5+X6=2
nên X1+X2+X3+X4+X5+X6=0
2+2+2=0
6=0(loại)
vậy không có giá trị nào thỏa mãn đề
22 tháng 8 2017
Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)
\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)
Vậy \(x_1=x_2=x_3=x_4=x_5=6\)
ta có \(B=\sqrt[5]{x^{15}.\left(2-x^5\right)^5}=\sqrt[5]{x^5.x^5.x^5\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right)}\)
\(\Leftrightarrow B=\sqrt[5]{\left(\frac{3}{5}\right)^3.\frac{5}{3}x^5.\frac{5}{3}x^5.\frac{5}{3}x^5\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right)}\)
\(\le\sqrt[5]{\left(\frac{3}{5}\right)^3.\left(\frac{5x^5+5\left(2-x^5\right)}{8}\right)^8}=\sqrt[5]{\left(\frac{3}{5}\right)^3.\left(\frac{5}{4}\right)^8}\)
Dâu bằng xảy ra khi \(\frac{5}{3}x^5=2-x^5\Leftrightarrow x=\sqrt[5]{\frac{3}{4}}\)