K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Áp dụng công thức \(1^2+2^2+3^2+.........+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Ta có \(:\)\(A=1^2+2^2+3^2+.......+100^2=\frac{100\left(100+1\right)\left(100\cdot2\right)+1}{6}\)

                                                                             \(=\frac{100\cdot101\cdot200+1}{6}=\frac{2020001}{6}\)

       Chúc cac sbanj học tốt !!!

14 tháng 3 2017

ta có

\(\left(\frac{100\cdot101}{2}\right)^2\)

=>\(5050^2\)

=>25502500

28 tháng 11 2019

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

28 tháng 11 2019

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)

8 tháng 10 2020

12 +22+32+...+n2

= 1.(2-1)+2.(3-1)+3.(4-1)+...+n.(n+1-1)

= (1.2+2.3+3.4+...+n.n(n+1)) - (1+2+3+...+n)

Dat A = 1.2+2.3+3.4+...+n.(n+1)

=> 3A = 1.2.3+2.3.3+3.4.3+...+n.(n+1).3

3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+n.(n+1).(n+2-n+1)

3A = (1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)) - (1.2.3+2.3.4+...+(n-1).n.(n+1))

3A = n.(n+1).(n+2)

\(\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

ta co: 1+2+...+n = n.(n+1)/2

=> \(1^2+2^2+...+n^2=\frac{n.\left(n+1\right).\left(n+2\right)}{3}-\frac{n.\left(n+1\right)}{2}=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\)

cop sai de hay sao z bn???

8 tháng 10 2020

Sửa đề : 12 + 22 + 32 + ... + n2 = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

VT <=> 1 ( 2 - 1 ) + 2 ( 3 - 1 ) + 3 ( 4 - 1 ) + ... + n [ ( n + 1 ) - 1 ]

= [ 1 . 2 + 2 . 3 + 3 . 4 + ... + n ( n + 1 ) ] - ( 1 + 2 + 3 + 4 + ... + n ) 

Đặt A = 1 . 2 + 2 . 3 + 3 . 4 + ... + n ( n + 1 ) . Ta có :

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 3n ( n + 1 )

=> 3A = 1.2.3 + 2.3 ( 4 - 1 ) + 3.4 ( 5 - 2 ) + ... + n ( n + 1 ) [ ( n + 2 ) - ( n - 1 ) ]

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n ( n + 1 ) ( n + 2 ) -  ( n - 1 ) n ( n + 1 )

=> 3A = n ( n + 1 ) ( n + 2 )

=> A = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

=> VT = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)- ( 1 + 2 + 3 + 4 + ... + n ) 

\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{\left(n+1\right)n}{2}\)

\(=\frac{2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)}{6}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{6}=VP\)( Đpcm )

12 tháng 7 2017

Sorry! Câu A là 32 nha!

23 tháng 10 2016

a) \(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n^2+2n+1+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

=>đpcm

b) Từ công thức trên ta có:

\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

=> \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2010}-\frac{1}{2011}\right)\)

\(=2010+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\right)\)

\(2010+\left(1-\frac{1}{2011}\right)=2010+\frac{2010}{2011}=2010\frac{2010}{2011}\)

13 tháng 6 2016

Tất cả các đẳng thức trên đều được chứng minh theo phương pháp quy nạp

Đặt n = k thì có đẳng thức

Chứng minh rằng n = k+1 cũng đúng ( vế trái (k+1) = vế phải (k+1) )

13 tháng 6 2016

thi giai ra luon dj