tính giá trị của biểu thức
Cho \(4a^2+b^2=\text{5ab}\) và \(2a>b>0\) , tính giá trị của A \(=\dfrac{ab}{4a^2-b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a^2 + b^2=5ab
<=>4a^2 + b^2 - 5ab=0
<=>4a(a - b) - b(a - b)=0
<=> (a -b )(4a - b)=0
<=>a-b=0 ; a=b hoặc 4a - b=0 ; a=b/4(loại)
đề lúc đầu sai :v
ĐKXĐ : \(2a\ne b\)\(;\)\(2a\ne-b\)
\(4a^2+b^2=5ab\)\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}}\)
+) Với \(a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
+) Với \(4a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a.4a}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
...
ĐKXĐ : \(a\ne b\)\(;\)\(a\ne-b\)
\(4a^2+b^2=5ab\)
\(\Leftrightarrow\)\(\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow\)\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\left(loai\right)\\4a=b\end{cases}}}\)
\(\Rightarrow\)\(4a=b\)
\(\Rightarrow\)\(M=\frac{ab}{a^2-b^2}=\frac{a.4a}{\left(a-b\right)\left(a+b\right)}=\frac{4a^2}{\left(a-4a\right)\left(a+4a\right)}=\frac{4a^2}{-15a^2}=\frac{-4}{15}\)
...
Ta có: \(4a^2+b^2=5ab\)
\(\Leftrightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\).Mà \(2a>b>0\Rightarrow4a>b>0\Rightarrow4a-b>0\)
Do đó \(a-b=0\Leftrightarrow a=b\)
Thay b bởi a,ta có: \(M=\frac{ab}{2a^2-b^2}=\frac{a^2}{2a^2-a^2}=\frac{a^2}{a^2}=1\)
\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)
\(\Leftrightarrow4a^2-4ab-ab+b^2\)
\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)
\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)
\(TH2:\) \(a-b=0\)
\(\Rightarrow a=b\)
\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)
\(\Rightarrow A=\dfrac{1}{3}\)