1/2+1/4+1/8+1/16+1/32+1/64...+1/2048
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128 = 256
256+256=512
512+512= 1024
1024+1024 = 2048
2048 + 2048 = 4096
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
256+256=512
512+512=1024
1024+1024=2048
2048+2048=4096
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
64+64=128
128+128=256
512+512=1024
2048+2048=4096
xong
Đặt A=1/2+1/4+1/8+1/16+1/32+...+1/2048+1/4096
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
1/ 2 + 2 = 4
2/ 4 + 4 = 8
3/ 8 + 8 = 16
4/ 16 + 16 = 32
5/ 32 + 32 =64
6/ 64 + 64 =128
7/ 128 + 128 =256
8/ 256 + 256 =512
9/ 521 + 512 =1033
10/ 2048 + 2048 =4096
Đặt \(A=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..-\frac{1}{2048}\)
\(\Rightarrow A=1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-..-\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(\Rightarrow A=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-..-\frac{1}{1024}+\frac{1}{2018}\)
\(\Rightarrow A+\frac{1}{2018}\)
1-1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512-1/1024-1/2048 =0.00048828125
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
gọi biểu thức là A
A=1/2+1/4+1/8+...+1/2048=1/2+1/2^2+1/2^3+...+1/2^10
=>2A=1+1/2+1/2^2+...+1/2^9
=>A=2A-A(bạn đặt cột dọc ra rồi sẽ thấy:1/2-1/2=0;1/2^2-1/2^2=0;...)Ta được kết quả bằng 1+1/2^10
Đặt A =1/2 + 1/4 + 1/8 + ...+ 1/1024 + 1/2048
A= 1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11
2A= 1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10
2A-A= (1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10) - (1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11)
A= 1+1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10 - 1/2 - 1/2^2 - 1/2^3 - ...- 1/2^10 - 1/2^11
A= 1- 1/2^11
A= 2047/ 2048
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(A=1-\frac{1}{2048}\)
\(\Rightarrow\)\(A=\frac{2047}{2048}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3B-B=1-\frac{1}{2187}\)
\(2B=\frac{2186}{2187}\)
\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)
Đặt : \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+......+\frac{1}{2048}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{1024}\)
\(2A-A=1-\frac{1}{2048}\)
\(A=\frac{2047}{2048}\)
Good
S=1/2 +1/4+...+1/2048+1/2048-1/2048
S=1/2+1/4+...+1/1024+1/1024-1/2048
...
S=1-1/2048
S=2047/2048