Cho x + y = 4 và x.y = 2. Tính x^3 + x^3 ( Giai theo cách lớp 7 nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2xy+2x-y=8\)
\(\Rightarrow\ 2x\left(y+1\right)-\left(y+1\right)=7\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=7\)
\(\Rightarrow\left[\begin{matrix}\begin{cases}2x-1=-7\\y+1=-1\end{cases}\\\begin{cases}2x-1=-1\\y+1=-7\end{cases}\end{matrix}\right.\left[\begin{matrix}\begin{cases}2x-1=7\\y+1=1\end{cases}\\\begin{cases}2x-1=1\\y+1=7\end{cases}\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=4\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=1\\y=6\end{cases}\\\left[\begin{matrix}\begin{cases}x=-3\\y=-2\end{cases}\\\begin{cases}x=0\\y=-8\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
c)\(x^2+xy+x+y=2\)
\(\Leftrightarrow x\left(x+1\right)+y\left(x+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(x+1\right)=2\)
\(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x+y=2\\x+1=1\end{cases}\\\begin{cases}x+y=1\\x+1=2\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x+y=-2\\x+1=-1\end{cases}\\\begin{cases}x+y=-1\\x+1=-2\end{cases}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=0\\y=2\end{cases}\\\begin{cases}x=1\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=-2\\y=0\end{cases}\\\begin{cases}x=-3\\y=2\end{cases}\end{matrix}\right.\end{matrix}\right.\)
\(\frac{x}{y}=\frac{5}{7}=\frac{x}{7}=\frac{y}{5}\) và x + y = 4,08
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{7}=\frac{y}{5}=\frac{x+y}{7+5}=\frac{4,08}{12}=\frac{17}{50}\)
\(\frac{x}{7}=\frac{17}{50}\Rightarrow x=\frac{17.7}{50}=\frac{119}{50}\)
\(\frac{y}{5}=\frac{17}{50}\Rightarrow y=\frac{17.5}{50}=\frac{17}{10}\)
Vậy..
Còn 2 cách kia là j???
a, \(\frac{x}{y}=\frac{5}{7}\)và x+y=4,08
Ta có: 4,08=\(\frac{102}{25}\)
\(\frac{x}{y}=\frac{5}{7}\Rightarrow7x=5y\)
\(\Rightarrow\frac{x}{5}=\frac{y}{7}\)và x+y=\(\frac{102}{25}\)
theo t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{\frac{102}{25}}{12}=\frac{17}{50}\)
\(\Rightarrow\frac{x}{5}=\frac{17}{50}\Rightarrow x=\frac{17}{10}\)
\(\frac{y}{7}=\frac{17}{50}\Rightarrow y=\frac{119}{50}\)
vậy x=
y=
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=2\)
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right)=2×\frac{50}{3}\)
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right)=\frac{100}{3}\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=3-\frac{100}{3}\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=-\frac{91}{3}\)
\(\frac{43}{8}+x=-\frac{91}{3}+\frac{173}{24}\)
\(\frac{43}{8}+x=-\frac{185}{8}\)
\(x=-\frac{185}{8}-\frac{43}{8}\)
\(x=-\frac{57}{2}\)
vậy \(x=-\frac{57}{2}\)
nhầm
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=2\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=3-2\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=1\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=1×\frac{50}{3}\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=\frac{50}{3}\)
\(\frac{43}{8}+x=\frac{50}{3}+\frac{173}{24}\)
\(\frac{43}{8}+x=\frac{191}{8}\)
\(x=\frac{191}{8}-\frac{43}{8}\)
\(x=\frac{37}{2}\)
vậy \(x=\frac{37}{2}\)
Gọi\(\frac{x}{5}=\frac{y}{3}=k\)\(\Rightarrow x=5k;y=3k\)\(\Rightarrow x\times y=5k\times3k=5\times k\times3\times k=60\)
\(\Rightarrow15k^2=60\) \(\Rightarrow k^2=60\div15\)\(\Rightarrow k^2=4\)\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\)
\(\Rightarrow x=10\)\(y=6\)
Với\(k=-2\)
\(\Rightarrow x=-10\)\(y=-6\)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
x3+y3=(x+y)(x2-xy+y2)=(x+y(x2+2xy+y2-3xy)=(x+y)[(x+y)2-3xy]=4[16-6]=40
Đáp số: 40
Ta có : \(\left(x-y\right)^2=x^2-2xy+y^2=x^2-2.2+y^2\)
\(\Rightarrow x^2+y^2=4\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left[\left(x^2+y^2\right)-xy\right]\)
\(=4\left(4-2\right)=8\)