G = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1536}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{1536}+\frac{1}{3072}\)
\(=\frac{2}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+\frac{1}{12}-\frac{1}{24}+...+\frac{1}{1536}-\frac{1}{3072}\)
\(=\frac{2}{3}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{12}-\frac{1}{12}\right)+...+\left(\frac{1}{1536}-\frac{1}{1536}\right)-\frac{1}{3072}\)
\(=\frac{2}{3}-\frac{1}{3072}\)
\(=\frac{2047}{3072}\)
a) \(\frac{14}{21}+1-\left|\frac{1}{3}-1\right|\)
\(=\frac{2}{3}+1-\frac{2}{3}\)
\(=1+\left(\frac{2}{3}-\frac{1}{3}\right)\)
\(=1\)
b) \(\frac{1}{3}-\left|\frac{-1}{4}+\frac{5}{6}\right|-\left|\frac{-7}{12}\right|\)
\(=\frac{1}{3}-\frac{7}{12}-\frac{7}{12}\)
\(=-\frac{5}{6}\)
a) $\frac{1}{3} + \frac{1}{3} + \frac{1}{6} = \frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}$
b) $\frac{1}{{12}} + \frac{3}{4} + \frac{2}{{12}} = \left( {\frac{1}{{12}} + \frac{2}{{12}}} \right) + \frac{3}{4} = \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1$
c) $\frac{{19}}{{15}} + 0 + \frac{{11}}{{15}} = \frac{{19 + 11}}{{15}} = \frac{{30}}{{15}} = 2$