a) cho a=3^n-1+3^n-1
b=2.3^n-1-3^n+1
Hãu chứng tỏ rằng trong hai số a và b cũng có ít nhất một sô không chia hết cho 7
b)Tìm số dư khi tổng A=1+3+3^2+3^3+3^4+...+3^2011 cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Nếu 3^n +1 là bội của 10 thì 3^n +1 có tận cùng là 0
=> 3n có tận cùng là 9
Mà : 3^n+4 +1 = 3^n . 3^4 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3^n+4 có tận cùng là 0 => 3^n+4 là bội của 10
Vậy 3^n+4 là bội của 10.
Bài 1:
Để A chia hết cho 3 thì 48+x chia hết cho 3
hay x chia hết cho 3
Để A không chia hết cho 3 thì x+48 không chia hết cho 3
hay x không chia hết cho 3
Bài 2:
a=24k+10=2(12k+5) chia hết cho 2
a=24k+10=24k+8+2=4(6k+2)+2 không chia hết cho 4
1. Cho tổng A = 12+15+21+x với x \(\in\) \(ℕ\). Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
- Để A chia hết cho 3 thì x chia hết cho 3.
- Để A không chia hết cho 3 thì x không chia hết cho 3.
2. Khi chia số tự nhiên a cho 24, ta đc số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
3. Đề thiếu
a chia hết cho 2 vì 24 và 10 đều chia hết cho 2
a không chia hết cho 4 vì 24 chia hết cho 4 nhưng 10 không chia hết cho 4
Ta có \(A=3.3^n+3^n-1=4.3^n-1\)
\(B=6.3^n-3^n+1=5.3^n+1\)
Khi đó \(A+B=4.3^n-1+5.3^n+1=9.3^n=3^{n+2}\)
Vì (3;7) = 1 nên A + B không chia hết cho 7.
Vậy trong A và B tồn tại ít nhất 1 số không chia hết cho 7.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.