cân bằng pthh:
OaNbKc---->O2NK+O2
có thể là sai đề tại đây là bài giải theo pthh nâng cao nên mik suy ra cái cthh rồi ra pthh thôi nma mn thử giúp mình với
tks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Sơ đồ phản ứng: \(Al+O_2-->^{t^0}Al_2O_3\).
-Thêm hệ số 2 trước Al2O3 làm chẵn (nguyên tố nào là phi kim mà có chỉ số nguyên tố lẻ thì làm chẵn).
-6 chia 2 bằng 3, ghi hệ số 3 trước O2.
-4 chia 1 bằng 4, ghi hệ số 4 trước Al.
-Vì Al tác dụng với oxi ở nhiệt độ cao nên bị oxi hóa.
\(\Leftrightarrow14-\frac{72}{-\left(8+x\right)}=-23\)
\(\Leftrightarrow37+\frac{72}{8+x}=0\)
\(\Leftrightarrow37\left(8+x\right)+72=0\)
\(\Leftrightarrow296+37x+72=0\)
\(\Leftrightarrow37x=-368\Leftrightarrow x=-\frac{368}{37}\)
Bạn làm như vậy hoàn toàn đúng rùi.
Đối với bài này ta có thể giải theo phương pháp đếm cho đơn giản.
Ta xét trên đoạn AB, sẽ có những điểm cực đại và cực tiểu xen kẽ nhau, mà mỗi cực đại tương đương như bụng, cực tiểu là nút (giống như sóng dừng).
Số bó sóng: \(\frac{AB}{\frac{\lambda}{2}}=\frac{60}{10}=6\)
Trong mỗi bó sóng sẽ có 2 điểm dao động với biên độ 3cm.
Như vậy, tổng số điểm dao động với biên độ 3cm trên AB là 12 điểm.
Trên cả đường tròn sẽ có tổng: 12.2 = 24 điểm.
Xét △ACD và △BDC có:
\(\begin{matrix}AD=BC\left(gt\right)\\\hat{D}=\hat{C}\left(gt\right)\\CD\text{ }chung\end{matrix}\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\Rightarrow\hat{ACD}=\hat{BDC}\text{ }hay\text{ }\text{ }\hat{ICD}=\hat{IDC}\)
⇒ △ICD cân tại I ⇒ \(ID=IC\left(1\right)\)
△KCD có: \(\hat{C}=\hat{D}\) ⇒ △KCD cân tại K ⇒ \(KD=KC\left(2\right)\)
Từ (1) và (2). Suy ra KI là đường trung trực của CD (3)
Tương tự ta cũng có: \(IA=IB;KA=KB\). Suy ra KI là đường trung trực của AB (4)
Từ (3) và (4). Vậy: KI là đường trung trực của AB và CD
Tại sao không giải ra $\sqrt{P}$ và $\sqrt{P}$?
Em đã có $P$ rồi, nhưng với $\sqrt{P}$, em làm sao rút gọn được khi mà $P$ đã khá gọn rồi. Cũng chẳng có giá trị nào của $x$ để tính cụ thể $P, \sqrt{P}$ rồi đi so sánh. Vì vậy cách này không khả thi.
Vậy thì phải tìm hướng khác. Muốn so sánh 2 số, ta xét hiệu hai số đó.
$P-\sqrt{P}=\sqrt{P}(\sqrt{P}-1)$
Rõ ràng $\sqrt{P}$ đã dương rồi, giờ ta phải xem xét xem $\sqrt{P}-1$ âm hay dương, hay $P$ có lớn hơn 1 không
Đó là lý do vì sao bài giải như trên.
Còn câu hỏi khi nào giải ra từng cái $P$ và $\sqrt{P}$, thì đó là khi đề cho $x=2$ chả hạn, so sánh $P$ và $\sqrt{P}$.
Nhưg hầu như sẽ chẳng có đề nào ra kiểu vậy, mà đa số lợi dụng tính chất của phân thức đó để so sánh (ví dụ như trong bài tính chất nổi bật là $P>1$) cho nhanh. Đó là cái hay của đề bài.
Nếu đã có sản phẩm là KNO2 và O2 thì có lẽ OaNbKc là KNO3 bạn nhé.