Cho các số dương a,b thỏa mãn:ab+a+b=3
Tìm GTNN của biểu thức: \(a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
Tương tự, ta có:
\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966
\(B=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(B=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)
\(B\le\frac{\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}}{2}=\frac{3}{2}\Rightarrow B_{max}=\frac{3}{2}\)
\(\text{Dấu "=" xảy ra khi và chỉ khi:}a=b=c=\frac{1}{\sqrt{3}}\)
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)
Ta có \(12=a+b+2ab\le a+b+\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow\left(a+b\right)^2+2\left(a+b\right)-24\ge0\Leftrightarrow\left(a+b+6\right)\left(a+b-4\right)\ge0\Leftrightarrow a+b\ge4\) (Do a + b + 6 > 0)
Dấu "=" xảy ra khi a = b = 2.
9 nha ban