K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

ta thấy số nhỏ nhất chia hết 15 và 18 là 270 mà ta thấy số cần tìm cộng 7 chia hết 15 và 18 vậy số đó là 270 - 7 = 263

12 tháng 3 2017

chia số đó thành 15 và 18 phần =nhau.ta có giá trị 1 phần là:

9+8=17

số đó là:17x15+8=263

đs:263

6 tháng 8 2023

tham khảo 

Vì a chia cho 8 dư 6⇒(a+2)⋮8

a chia cho 12 dư 10 ⇒(a+2)⋮12

Do đó (a+2)∈BC(12;8) mà BCNN(12,8)=24.

Do đó (a+2)⋮24⇒a chia cho 24 dư 22

 

6 tháng 8 2023

nó tương tự á

5 tháng 8 2016

nhanh đi mà

6 tháng 8 2016

số bé là 75

số lớn là 653

12 tháng 12 2016

Thôi, kệ đi, cả hai đều làm sai hết. Đây là cách giải của tôi:

Vì a chia 7 dư 6; 11 dư 8 và 15 dư 9 nên giả sử:

\(a=7m+6=11n+8=15p+9\)

Ta có:

\(a+36=7m+42=11n+44=15p+45\)

=> a + 36 chia hết cho cả 7, 11 và 15 hay a + 36 chia hết cho 1155

=> a : 1155 dư 1155 - 36 = 1119

10 tháng 12 2016

A  chia cho 7 dư 6 suy ra a chia hết cho13

A chia cho 11 dư 8 suy ra a chia hết cho 19

A chia cho 15 dư 9 suy ra a chia hết cho 24.

Suy ra a thuộc BC(13,19,24) và a nhỏ nhất nén a =BCNN(13,19,24)

13=13.

19=19.

24=2^3.3

A= BCNN(13,19,24)=2^3.3.13.19=5928.

Khi a chia cho 1155 thì có số dư là 5928:1155=5 dư 153.

13 tháng 3 2017

252 đó bạn vì 2015 chia 252 = 7 dư 251

số chia đó là:

2015x7=1025

đáp số:1025

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0

3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)