cho a,b,c>0 thỏa mãn
1/(1+a)+1/(1+b)+1/(1+c)=2
tìm giá trị lớn nhất của Q=abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(a+b=x,b+c=y;c+a=z\)
ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\Rightarrow3-\frac{1}{x+1}-\frac{1}{y+1}-\frac{1}{z+1}=1\) \(\)
=> \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\)
=> \(\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{x}{x+1}=\frac{1}{x+1}\)
Áp dụng bđt cô si ta có \(\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
=> \(\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
tương tự ta có
\(\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\)
\(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)
nhân từng vế của 3 bđt cùng chièu ta có
\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{x^2y^2z^2}{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}}=8.\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)
Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 )
Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy maxP = 1/81 <=> a = b = c = 1/3
\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)
\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
\(a+b+c\le\sqrt{3}\)
\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=1\)
Thay vào M ta có: \(M\le\frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Xét: \(\left(\frac{a}{a+b}+\frac{a}{a+c}\right)^2\ge\frac{4a^2}{\left(a+b\right)\left(a+c\right)}\Leftrightarrow\frac{a}{a+b}+\frac{a}{a+c}\ge\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Tương tự rồi cộng vế vs vế ta được: \(M\le\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi a=b=c = \(\frac{\sqrt{3}}{3}\)