K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

A = 1 x 99 + 3 x 97 +... + 49 x 51 

A= 1x(100 - 1) + 3x(100 - 3) +....+ 49x(100 - 49)

A= 100 - 1 + 3x100 - 3x3 + .... + 49x100 - 49x49

A= (1 + 3 +...+ 49 )x100  -  ( 1 + 3x3 +.... + 49x49)

A=625x100 -20825 =62500-20825 = 41675

11 tháng 7 2023

Số số hạng của phép tính là \(\dfrac{\left(49-1\right)}{2}+1=25\) số hạng

\(K=1x\left(100-1\right)+3x\left(100-3\right)+5x\left(100-5\right)+...+49x\left(100-49\right)=\)

\(=100x\left(1+3+5+...+49\right)-\left(1^2+3^2+5^2+...+49^2\right)=\)

Đặt

\(A=1+3+5+...+49\)

\(B=1^2+3^2+5^2+...+49^2\)

\(B=1x\left(3-2\right)+3x\left(5-2\right)+5\left(7-2\right)+...+49x\left(51-2\right)=\)

\(1x3+3x5+5x7+...+49x51-2\left(1+3+5+...+49\right)=\)

\(K=100xA-B=102xA-\left(1x3+3x5+5x7+...+49x51\right)=\)

A là cấp số cộng có 25 số hạng; d=2

Đặt

 \(C=1x3+3x5+5x7+...+49x51\)

\(6xC=1x3x\left(5+1\right)+3x5x\left(7-1\right)+5x7x\left(9-3\right)+...+49x51x\left(53-47\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9+...-47.49.51+49.51.53=\)

\(=1.3+49x51x53\Rightarrow C=\dfrac{1.3+49.51.53}{6}\)

Bạn tự tính toán nốt nhé

6 tháng 3 2018

 tìm số TỰ NHIÊN NHỎ NHẤT SAO CHO KHI CHIA NÓ CHO 4,5,6 LẦN LƯỢT CÓ SỐ DƯ LÀ 3,4,5 VÀ SỐ ĐÓ CHIA HẾT CHO 13

10 tháng 10 2021

 

 

13 tháng 6 2023

C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1

C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)

C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992

C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)

C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]

C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)

C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)

C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)

Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99

3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)

3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99

3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)

3A = 98×99×100

A = 98×33×100

A = 323400

C = 495000 + 4950 + 323400

C = 823350

25 tháng 6 2016

C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1

C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)

C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992

C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)

C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]

C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)

C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)

C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)

Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99

3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)

3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99

3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)

3A = 98×99×100

A = 98×33×100

A = 323400

C = 495000 + 4950 + 323400

C = 823350

10 tháng 10 2016

Ở Tử số là phép cộng tổng mà: 

1 xuất hiện 99 lần
2 xuất hiện 98 lần
3 xuất hiện 97 lần
... 
99 xuất hiện 1 lần


Do đó tử số bằng: 1 x 99 + 2 x 98 + 3 x 97 +...99 x 1

Vậy phân số trên có tử số bằng mẫu số nên bằng 1

10 tháng 10 2016

= 1 Vì tử số và mẫu số đều bằng nhau !

30 tháng 6 2019

C = 1 × 99 + 2 × 98 + 3 × 97 + ... + 98 × 2 + 99 × 1

C = 1 × (100 - 1) + 2 × (100 - 2) + 3 × (100 - 3) + ... + 98 × (100 - 98) + 99 × (100 - 99)

C = 1 × 100 - 12 + 2 × 100 - 22 + 3 × 100 - 32 + ... + 98 × 100 - 982 + 99×100 - 992

C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)

C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]

C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)

C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)

C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)

Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99

3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)

3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99

3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)

3A = 98×99×100

A = 98×33×100

A = 323400

C = 495000 + 4950 + 323400

C = 823350

~ Hok tốt ~

11 tháng 8 2020

Đặt \(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right):\left(\frac{1}{1.99}+\frac{1}{3.97}+....+\frac{1}{97.3}+\frac{1}{99.1}\right)\)

Đặt \(B=\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{97.3}+\frac{1}{99.1}\)

=> 100 x B = \(\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{97.3}+\frac{100}{99.1}=1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+...+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1\)

=> 100 x B = \(2.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)

=> \(B=\frac{1}{50}.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)

Khi đó A = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{50}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{\frac{1}{50}}=50\)