Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó:
a) A=\(\frac{3n+9}{n-4}\)
b) B=\(\frac{6n+5}{2n-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
để A có giá trị là số nguyên thì (3n+9) phải chia hết cho(n-4)
n-4 chia hết cho n-4
suy ra 3(n-4) cũng chia hết cho n-4
Vậy 3n-12 chia hết cho n-4
Suy ra (3n+9)-(3n-4) chia hết cho n-4
suy ra 13 chia hết cho n-4
n-4 thuộc tập hợp ƯC của 13
Bạn tự làm tiếp nhé!!!( lập bảng hay không đều được)
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
\( Để A=\frac{n+10}{2n-8}\)CÓ GIÁ TRỊ NGUYÊN
\(\Rightarrow n+10⋮2n-8\)
\(\Rightarrow2\left(n+10\right)⋮2\left(n-4\right)\)
\(\Rightarrow n+10⋮n-4\)
\(\Rightarrow\left(n-4\right)+14⋮n-4\)
\(\Rightarrow n-4\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Vì n là số tự nhiên \(\Rightarrow n\in\left\{2;3;5;6;11;18\right\}\)
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7