Tam giác ABC có độ dài ba cạnh là AB=c,AC=b,BC=a. Các phân giác AD,BE và CF cắt nhau tại O.
a)Tính độ dài đoạn thẳng AE theo a,b,c
b) chứng minh rằng tam giác ABC là tam giác vuông khi \(\frac{OB.OC}{BE.CF}\)=\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.) từ các tia phân giác suy ra được OE/OB=AE/AB=EC/BC
suy ra AE/c=EC/a
áp dụng tính chất dãy tỉ số bằng nhau ta có :
AE/c=EC/a=AE+EC/c+a=AC/c+a=b/c+a
suy ra AE=bc/c+a
tương tự ta có AF=bc/a+b
ta có OB/OE=AB/AE=c/AE
suy ra OB/OE+OB=c/AE+c (ko bik bạn học cái này chưa)
OB/BE=c/AE+c(1)
tương tự ta lại có OC/CF=b/AF+b(2)
từ (1) và (2) suy ra OB.OC/BE.CF=bc/(AE+c)(AF+b)=1/2
nhân chéo ta có 2bc=(AE+c)(AF+b)=(bc/(c+a)+c)(bc/(a+b)+b)
2bc=(c(a+b+c)/(a+c))(b(a+b+c)/(a+b))
2bc=bc(a+b+c)^2/(a+c)(a+b)
2=(a+b+c)^2/(a+c)(a+b)
suy ra (a+b+c)^2=2(a+c)(a+b)
tách ra rút gọn còn a^2=b^2+c^2
suy ra tam giác ABC vuông tại A
a, từ đề bài có:
BE⊥ACCF⊥ABBE⊥AC CF⊥AB
⇒ΔBFC vuông tại FΔCEB vuông tại E⇒ΔBFC vuông tại FΔCEB vuông tại E
Xét ΔBFCΔBFC:
BF3=BC5=k⇒BF=3k,BC=5kBF3=BC5=k⇒BF=3k,BC=5k
Theo định lý Py-ta-go ta có:
(3k)2+82=(5k)29k2+64=25k264=16k2k2=4k=2BF=3k=3⋅2=6BC=5k=5⋅2=10(3k)2+82=(5k)29k2+64=25k264=16k2k2=4k=2BF=3k=3⋅2=6BC=5k=5⋅2=10
Xét ΔCEBΔCEB:
Theo định lý Py-ta-go đảo ta có:
CE2+BE2=CB2CE2+82=102CE2+64=100CE2=36CE=6CE2+BE2=CB2CE2+82=102CE2+64=100CE2=36CE=6
Xét ΔBFC và ΔCEBΔBFC và ΔCEB có:
CE=BF(=6)BE=CF(gt)Cạnh chung BC⇒ΔBFC và ΔCEB(c.c.c)⇒FBCˆ=ECBˆ(góc tương ứng)CE=BF(=6)BE=CF(gt)Cạnh chung BC⇒ΔBFC và ΔCEB(c.c.c)⇒FBC^=ECB^(góc tương ứng)
Xét ΔABCΔABC:
ABCˆ=FBCˆ=ECBˆ=ACBˆ⇒ABCˆ=ACBˆABC^=FBC^=ECB^=ACB^⇒ABC^=ACB^
ΔABCΔABC có hai góc ở đáy bằng nhau
⇒ΔABC⇒ΔABC là tam giác cân
b) BC=10(cmt)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
hahahahahahahahihihihihihihhehehehehehehehuhuhuhuhuhuhhhahahahahaahahahahahahahahahahahchchchchchchhchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdcjertfr8yvgrvcfhvrigy4olgth4786ty8n+tynyn4mj4m765u45ik87i547113jrghrhygutgeytfgryfeyftruyrrtgteyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddđ
uyuuu
cd
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
c
cc
c
c
c
c
c
c
c
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
cc
c
c
c
cc
c
cc
c
c
c
c
c
c
cc
c
c