K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

17 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

21 tháng 3 2023

a, hình vuông có thể là hcn mà bn vì nó đều có 4 góc bằng nhau và 2 cạnh đối song song bằng nhau

 

1: Xét tứ giác ABCD có

góc BAD=góc ABC=góc BCD=90 độ

=>ABCD là hình chữ nhật

15 tháng 12 2023

1. Ta có tam giác ABC cân tại A, do đó AB = AC.

Gọi I là giao điểm của đường phân giác góc B và đường phân giác góc C.

Ta cần chứng minh MN // BC.

Ta có:

∠BIM = ∠CIM (do I nằm trên đường phân giác góc B và đường phân giác góc C)

∠BIM = ∠CIM = ∠BIC/2 (do I nằm trên đường phân giác góc B và đường phân giác góc C)

∠BIC = ∠BAC (do tam giác ABC cân tại A)

∠BIC = ∠BAC = ∠BCA (do tam giác ABC cân tại A)

Do đó, ta có ∠BIM = ∠CIM = ∠BCA.

Từ đó, ta có MN // BC (do ∠MNI = ∠BCA và ∠MIN = ∠BAC).

Vậy ta đã chứng minh MN // BC.

 

2. a) Ta có BF/BE = 2/3.

Gọi x là độ dài của BE.

Do BF/BE = 2/3, ta có BF = (2/3)x.

Gọi y là độ dài của FE.

Do FE = 12cm, ta có y = 12cm.

Gọi z là độ dài của IF.

Do I là giao điểm của FE và BD, ta có IF/FE = BD/BE.

Do đó, IF/12 = BD/x.

Ta có BD = BC + CD = BC + BA = BC + BE.

Do đó, IF/12 = (BC + BE)/x.

Ta có BF/BE = 2/3, nên BF = (2/3)x.

Do đó, BC = BF + FC = (2/3)x + (1/3)x = x.

Vậy, IF/12 = (x + x)/x = 2.

Từ đó, ta có IF = 2 * 12 = 24cm.

Do đó, IE/IF = BE/FE = x/12.

Vậy, IE/IF = x/12.

 

b) Giả sử FE = 12cm.

Từ phần a), ta đã tính được IF = 24cm.

Do đó, IE/IF = x/12.

Ta cần tính x.

Ta có BF/BE = 2/3, nên BF = (2/3)x.

Do BF = (2/3)x và BC = x, ta có BC = BF + FC.

Do đó, x = (2/3)x + FC.

Từ đó, FC = (1/3)x.

Vậy, BC = BF + FC = (2/3)x + (1/3)x = x.

Do đó, BC = x = 12cm.

Vậy, độ dài của IE và IF lần lượt là 12cm và 24cm.

15 tháng 12 2023

Mình cảm ơn ạ.

27 tháng 5 2022

△AOE và △BOG có:

\(AO=BO\) (O là tâm hình vuông ABCD).

\(AE=BG\)

\(\widehat{OAE}=\widehat{OBG}=45^0\)

\(\Rightarrow\)△AOE=△BOG (c-g-c).

\(\Rightarrow OE=OG;\widehat{AOE}=\widehat{BOG}\)

Mà \(\widehat{AOE}+\widehat{BOE}=90^0\) \(\Rightarrow\widehat{GOE}=\widehat{BOG}+\widehat{BOE}=90^0\)

\(\Rightarrow\)△OGE vuông cân tại O.

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
7 tháng 4 2021

giải hộ đi

 

7 tháng 4 2021

cần mỗi câu a thôi

 

15 tháng 12 2022

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Vì DEBFlà hình bình hành

nên DB cắt EF tại trung điểm của mỗi đường(1)

Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra E,O,F thẳng hàng

c: Để DEBF là hình thoi thì DE=BE=AB/2

Xét ΔDAB có

DE là trung tuyến

DE=AB/2

Do đo:ΔDAB vuông tại D

=>DA vuông góc với DB