K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Ta có: 3 = ba = bố (vì 3 còn được gọi là bố)

=> 3n = bốn = 4

Vậy 3n = 4

2 tháng 5 2017

.

Không thể được đâu bạn ơi, giả sử như n = 2, thay vào phân số trên sẽ được kết quả là 8/9 >> không phải là phân số tối giản.

2 tháng 5 2017

gọi ƯC( 3n+2 và 4n+1) là d

suy ra 3n+2 chia hết cho d và 4n+1 chia hết cho d

suy ra ( 3n+2) - ( 4n +1) chia hết cho d

        4(3n+2) - 3(4n+1)chia hết d

      12n+8- 12n-3 chia hết d

                8-3      chia hết d

                5         .............

Vì 3n+2vs 4n+1 là 2 số nguyên tố cung nhau

suy ra d=1

Vậy...............

Đề sai nhé ! 

Giả sử thay n = 2 thì 3.2 + 1 = 7 không chia hết cho 3 

Đề phải là tìm số n để 3n + 1 chia hết cho n + 1

Ta có : 3n + 1 chia hết cho n + 1

<=> 3n + 3 + 5 chia hết cho n + 1

<=> 3(n + 1) + 5 chia hết cho n + 1

<=> 5 chia hết cho n + 1

<=> n + 1 thuộc Ư(5) = {1;5}

+ n + 1 = 1 => n = 0

+ n + 1 = 5 => n = 4

26 tháng 3 2018

3n + 1 \(⋮\)n + 1

= 3( n + 1 ) \(⋮\)n + 1

Vì n + 1 \(⋮\)n + 1 cho nên 3 \(⋮\)n + 1 \(\Rightarrow\)n + 1 \(\in\)Ư(3)

Mà Ư(3) = { 1;-1;3;-3 } \(\Rightarrow\)n + 1 = { 1;-1;3;-3 } \(\Rightarrow\)\(\in\){ 0;-2;2;-4 }

25 tháng 8 2019

Gọi d là ƯCLN 2n+1 và 3n + 2

=> 2n + 1\(⋮\)d          => 3(2n + 1)\(⋮\)d              => 6n + 3 \(⋮\)d

và 3n + 2\(⋮\) d          và 2(3n +2)\(⋮\)d               và 6n + 4\(⋮\)d

=> (6n+4) - (6n + 3) \(⋮\)d

=> 6n + 4 - 6n - 3\(⋮\)d

=> 1 \(⋮\)d

=> d\(\in\)Ư(1) = {1;-1}

=> đpcm

25 tháng 8 2019

Cảm ơn bạn nhiều nha 😘😘

3 tháng 11 2016

Ta gọi số là ABCD...XYZ

Khi đó ta có thể viết dưới dạng:

ABCD...XYZ = Z + 10Y + 100X + ....

                    = Z + (9Y + Y) + (99X + X) + ...

                    = (Z + Y + X + ... ) + (9Y + 99X + ....)

=> ABCD...XYZ - (Z + Y + X + ,,,) = 9Y + 99X + ....

Vế phải chia hết cho 9.

3 tháng 11 2016

a@olm.vn nhanh thế

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

21 tháng 11 2017

Gọi 2 số chẵn liên tiếp là 2.k và 2.k +2 ( k thuộc N)

·        Nếu k là số lẻ suy ra k =2.q+1.( q thuộc N)

Khi đó: 2.k +2= 2. (2.q+1) +2 =2.2.q +2+2 = 4.q +4 chia hết cho 4

·        Nếu k là số chẵn suy ra k =2.q ( q thuộc N)

Khi đó: 2.k = 2. 2.q =  4.q  chia hết cho 4

Vậy trong hai số chẵn liên tiếp luôn có một số chia hết cho 4