Cho tam giác ABC có góc B=600,AB=16cm,AC=14cm.Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cosB=(16^2+BC^2-14^2)/(2*16*BC)
=>BC^2+60=32*BC*cos40
=>BC=21,76cm
S ABC=1/2*21,76*16*sin40=111,90cm2
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
Xét \(\Delta ABC\)ta có :
\(\hept{\begin{cases}AB^2+AC^2=12^2+16^2=400\\BC^2=20^2=400\end{cases}\Rightarrow}AB^2+AC^2=BC^2\)
=> \(\Delta ABC\)vuông tại A
=> \(\widehat{A}=90^0\)
=> \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(90^0+55^0\right)=35^0\)
Vậy : ...
Đồng chí tự vẽ hình nhé.
Kẻ \(AD\perp BC=\left\{D\right\}\)
a, \(\Delta ABD\)có: \(\widehat{ADB}=90^o\)
\(\Rightarrow AD=AB.\sin B\Leftrightarrow AD=16.\sin30=8\sqrt{3}\left(cm\right)\)
\(\Delta ABD\)có: \(\widehat{ADB}=90^o\)
\(\Rightarrow AB^2=AD^2+BD^2\)(định lý Py-ta-go)
hay \(16^2=\left(8\sqrt{3}\right)^2+BD^2\)
\(BD^2=64\)
\(BD=8\left(cm\right)\)
\(\Delta ADC\)có: \(\widehat{ADC}=90^o\)
\(\Rightarrow AC^2=AD^2+CD^2\)(định lý Py-ta-go)
hay \(14^2=\left(8\sqrt{3}\right)^2+CD^2\)
\(CD^2=4\)
\(CD=2\left(cm\right)\)
Ta có: \(BC=CD+BD=2+8=10\left(cm\right)\)
b, \(S_{\Delta ABC}=\frac{AD.BC}{2}=\frac{8\sqrt{3}.10}{2}=40\sqrt{3}\left(cm^2\right)\)
Thật sự tui không biết mình có làm đúng không, sai thì nhớ bảo nhá
Kẻ AH vuông góc với BC.Vì góc B =60* nên góc BAH =30*.Trong tam giác AHB có cạnh BH đối diện với góc BAH
suy ra BH=1/2 AB=8 cm (theo tính chất trong tam giác vuông cạnh đối diện với góc 30* bằng 1/2 cạnh huyền).
Xét tam giác AHB vuông tại H theo Pi-ta-go ta có:AH^2=AB^2-BH^2 hay AH^2=16^2-8^2=192.Suy ra AH=căn bậc hai của 192.
Xét tam giác AHC vuông tại H,theo pi-ta -go ta có:CH^2=AC^2-AH^2 hay CH^2= 14^2- căn bậc hai của 192 tất cả ^2=196-192=4
Suy ra CH=2 cm.Vậy BC=CH+BH=8+2=10cm H A B C