K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Kẻ AH vuông góc với BC.Vì góc B =60* nên góc BAH =30*.Trong tam giác AHB có cạnh BH đối diện với góc BAH

suy ra BH=1/2 AB=8 cm (theo tính chất trong tam giác vuông cạnh đối diện với góc 30* bằng 1/2 cạnh huyền).

Xét tam giác AHB vuông tại H theo Pi-ta-go ta có:AH^2=AB^2-BH^2 hay AH^2=16^2-8^2=192.Suy ra AH=căn bậc hai của 192.

Xét tam giác AHC vuông tại H,theo pi-ta -go ta có:CH^2=AC^2-AH^2 hay CH^2= 14^2- căn bậc hai của 192 tất cả ^2=196-192=4

Suy ra CH=2 cm.Vậy BC=CH+BH=8+2=10cm H A B C

cosB=(16^2+BC^2-14^2)/(2*16*BC)

=>BC^2+60=32*BC*cos40

=>BC=21,76cm

S ABC=1/2*21,76*16*sin40=111,90cm2

27 tháng 2 2021

Dựa theo định lý pytago:

=> BH2+AH2=AB2

=> AB2=52+122

AB2=25+144=169

=> AB=\(\sqrt{169}=13\left(cm\right)\)

Ta có: HC= BC-BH=14-5=9(cm)

Dựa theo định lý pytago:

AH2+HC2=AC2

=> AC2=122+92

AC2=144+81= 225(cm)

=> AC= \(\sqrt{225}=15\left(cm\right)\)

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

13 tháng 5 2022

Thanks. Mà câu c đou:)

 

2 tháng 10 2015

mk đã hk đâu tuần sau nhé

2 tháng 10 2015

Câu hỏi tương tự nha bạn.

15 tháng 3 2021

Xét \(\Delta ABC\)ta có :

\(\hept{\begin{cases}AB^2+AC^2=12^2+16^2=400\\BC^2=20^2=400\end{cases}\Rightarrow}AB^2+AC^2=BC^2\)

=> \(\Delta ABC\)vuông tại A

=> \(\widehat{A}=90^0\)

=> \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(90^0+55^0\right)=35^0\)

Vậy : ...

15 tháng 3 2021

Đố nay khi ăn ổi có cái gì đáng sợ nhất?

27 tháng 7 2018

Đồng chí tự vẽ hình nhé.

Kẻ \(AD\perp BC=\left\{D\right\}\)

a, \(\Delta ABD\)có: \(\widehat{ADB}=90^o\)

\(\Rightarrow AD=AB.\sin B\Leftrightarrow AD=16.\sin30=8\sqrt{3}\left(cm\right)\)

\(\Delta ABD\)có: \(\widehat{ADB}=90^o\)

\(\Rightarrow AB^2=AD^2+BD^2\)(định lý Py-ta-go)

hay \(16^2=\left(8\sqrt{3}\right)^2+BD^2\)

\(BD^2=64\)

\(BD=8\left(cm\right)\)

\(\Delta ADC\)có: \(\widehat{ADC}=90^o\)

\(\Rightarrow AC^2=AD^2+CD^2\)(định lý Py-ta-go)

hay \(14^2=\left(8\sqrt{3}\right)^2+CD^2\)

\(CD^2=4\)

\(CD=2\left(cm\right)\)

Ta có: \(BC=CD+BD=2+8=10\left(cm\right)\)

b, \(S_{\Delta ABC}=\frac{AD.BC}{2}=\frac{8\sqrt{3}.10}{2}=40\sqrt{3}\left(cm^2\right)\)

Thật sự tui không biết mình có làm đúng không, sai thì nhớ bảo nhá