tìm tất cả các số nguyên n để (n+15)/(n+2) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(n+19, n-2)$
$\Rightarrow n+19\vdots d; n-2\vdots d$
$\Rightarrow (n+19)-(n-2)\vdots d$
$\Rightarrow 21\vdots d$
Để phân số đã cho tối giản, thì $(21,d)=1$, hay $(3,d)=(7,d)=1$
Để $(d,3)=1$ thì $n-2\not\vdots 3$
$\Rightarrow n\neq 3k+2$
Để $(d,7)=1$ thì $n-2\not\vdots 7$
$\Rightarrow n\neq 7m+2$
Vây $n$ không chia 3 dư 2 và không chia 7 dư 2 thì phân số trên tối giản.
Ta sẽ tìm \(n\)để \(\frac{n+19}{n-2}\)không là phân số tối giản.
\(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)không tối giản suy ra \(\frac{21}{n-2}\)không tối giản
Suy ra \(n-2\inƯ\left(21\right)=\left\{-21,-7,-3,-1,1,3,7,21\right\}\)
\(\Rightarrow n\in\left\{-19,-5,-1,1,3,5,9,23\right\}\).
Vậy \(n\notin\left\{-19,-5,-1,1,3,5,9,23\right\}\)thì \(\frac{n+19}{n-2}\)là phân số tối giản.
Gọi ƯCLN ( 12n+1,30n+2 ) = d
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left[\left(60n+5\right)-60n-4\right]\)\(⋮d\)
\(\Rightarrow\)1\(⋮d\)
\(\Rightarrow\)d = 1
Vậy phân số\(\frac{12n+1}{30n+2}\)tối giản với mọi n
Đặt \(12n+1;30n+2=d\)
\(12n+1⋮d\Rightarrow60n+5⋮d\)
\(30n+2\Rightarrow60n+4⋮d\)
Suy ra : \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
ta có n+13=n-2+15để n+13 lá p/s tối giẩn thì 15 và n+2 là p/s tối giản.
suy ra n+2 ko chia hết cho 3 và 5
suy ra n khác 3k+1 và 5k+3
Gọi (n+13;n-2) là d
Ta có n+13 chia hết cho d; n-2 chia hết cho d
suy ra [(n+13)-(n-2)] chia hết cho d
suy ra 15 chia hết cho d và d thuộc ước của 15={1;3;5;15}
suy ra để n+13/n-2 là phân số tối giản thì d=1 và n+13 không chia hết cho 3; 5; 15
n-2 không chia hết cho 3;5;15
suy ra n+13 không chia hết cho 15
vì 13 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n+13 không chia hết cho 15
n-2 không chia hết cho 15
vì 2 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n-2 không chia hết cho 15
suy ra n chia hết cho 15 thì n+13/n-2 là phân số tối giản
\(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\)
\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\left(\frac{2010}{2010}+\frac{2}{2010}\right)\)\(=1+1+1+1+\frac{2}{2010}=4+2010\)\(< 4\)
Vậy S < 4
Lời giải:
Gọi $d=ƯCLN(n+15,n+2)$
$\Rightarrow n+15\vdots d; n+2\vdots d$
$\Rightarrow (n+15)-(n+2)\vdots d$
$\Rightarrow 13\vdots d$
$\Rightarrow d=1$ hoặc $d=13$.
Để ps đã cho tối giản thì $d\neq 13$
$\Leftrightarrow n+2\not\vdots 13$
$\Leftrightarrow n\neq 13k-2$ với $k$ nguyên.