K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

A B C N M I

a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\)

Xét \(\Delta ABN\)\(\Delta ACM\)có:\(\hept{\begin{cases}\widehat{ANB}=\widehat{AMC}=90^0\\AB=AC\\\widehat{A}\end{cases}\Rightarrow\Delta ABN=\Delta ACM}\)(cạnh huyền góc nhọn)\(\Rightarrow BN=CM\)

b)\(\Delta ABN=\Delta ACM\Rightarrow\hept{\begin{cases}AN=AM\Rightarrow AC-AN=AB-AM\Rightarrow NC=MB\\\widehat{NCI}=\widehat{MBI}\left(\widehat{ACM}=\widehat{ABN}\right)\end{cases}}\)

Xét \(\Delta NIC\)và \(\Delta MIB\)có:\(\hept{\begin{cases}\widehat{CNI}=\widehat{BMI}=90^0\\NC=MB\\\widehat{NCI}=\widehat{MBI}\end{cases}\Rightarrow\Delta NIC=\Delta MIB\left(g.c.g\right)\Rightarrow IB=IC\Rightarrow\Delta IBC}\)cân tại \(I\)

c) \(\Delta NIC=\Delta MIB\Rightarrow IN=IM\Rightarrow\Delta MIN\)cân tại \(I\)\(\Rightarrow\widehat{IMN}=\widehat{INM}=\frac{180^0-\widehat{MIN}}{2}\left(1\right)\)

\(\Delta IBC\)cân tại \(I\Rightarrow\widehat{IBC}=\widehat{ICB}=\frac{180^0-\widehat{BIC}}{2}\left(2\right)\)

\(\widehat{BIC}=\widehat{MIN}\)(đối đỉnh)\(\left(3\right)\)

Từ (1),(2) và (3)\(\Rightarrow\widehat{IMN}=\widehat{INM}=\widehat{IBC}=\widehat{ICB}\)(2 cặp góc so le trong)\(\Rightarrow MN\)//\(BC\)

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

a: Xét ΔABN vuông tại N và ΔACM vuông tại M có

AB=AC
\(\widehat{BAN}\) chung

Do đó: ΔABN=ΔACM

Suy ra: BN=CM

b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có 

BC chung

MC=BN

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)

25 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(NM=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

a: Xét ΔABN vuông tại N và ΔACM vuông tại M có

AB=AC
\(\widehat{BAN}\) chung

Do đó: ΔABN=ΔACM

Suy ra: BN=CM

b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có 

BC chung

MC=BN

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạngvới ΔABC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BN là phan gíac

=>AN/AB=CN/BC

=>AN/3=CN/5=(AN+CN)/8=16/8=2

=>AN=6cm; CN=10cm

c: góc AMN=góc BMH

góc ANM=góc BMH

=>góc AMN=góc ANM

=>AM=AN

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạngvới ΔABC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BN là phan gíac

=>AN/AB=CN/BC

=>AN/3=CN/5=(AN+CN)/8=16/8=2

=>AN=6cm; CN=10cm

c: góc AMN=góc BMH

góc ANM=góc BMH

=>góc AMN=góc ANM

=>AM=AN

3 tháng 4 2023

Bạn biết làm câu d ko ạ?

 

31 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)

15 tháng 3 2023

Có chỗ nào không hiểu thì hỏi b nhé

loading...