K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

Vì \(13^{2001}+1< 13^{2002}+1\) nên \(B=\frac{13^{2001}+1}{13^{2002}+1}< 1\)

\(\Rightarrow B=\frac{13^{2001}+1}{13^{2002}+1}< \frac{13^{2001}+1+12}{13^{2002}+1+12}=\frac{13^{2001}+13}{13^{2002}+13}=\frac{13\left(13^{2000}+1\right)}{13\left(13^{2001}+1\right)}=\frac{13^{2000}+1}{13^{2001}+1}=A\)

\(\Rightarrow B< A\)

19 tháng 7 2022

cacwj con

13 tháng 10 2019

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)

nên x + 1 = 0 => x = -1

Vậy x = -1

b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(1+\frac{x+4}{2000}+1+\frac{x+3}{2001}=1+\frac{x+2}{2002}+1+\frac{x+1}{2003}\)

\(\frac{2004+x}{2000}+\frac{2004+x}{2001}=\frac{2004+x}{2002}+\frac{2004+x}{2003}\)

\(\frac{2004+x}{2000}+\frac{2004+x}{2001}-\frac{2004+x}{2002}-\frac{2004+x}{2003}=0\)

\(\left(2004+x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\)

nên 2004 + x = 0 => x = -2004

Vậy x = -2004

=))

20 tháng 6 2018
  •  13/27 và 7/15
    \(\frac{13}{27}\) = 1:\(\frac{27}{13}\)= 1: \(\frac{26+1}{13}\) = 1: ( 2+\(\frac{1}{13}\))
    \(\frac{7}{15}\)= 1:\(\frac{15}{7}\)= 1: \(\frac{14+1}{7}\)= 1: ( 2+ \(\frac{1}{7}\))
    ta có \(\frac{1}{13}\)\(\frac{1}{7}\)=>   2+\(\frac{1}{13}\)< 2+ \(\frac{1}{7}\) => 1: ( 2+\(\frac{1}{13}\)) >  1: ( 2+ \(\frac{1}{7}\))

    vậy \(\frac{13}{27}\)>\(\frac{7}{15}\)

  •  2000/2001 và 2001/2002
    \(\frac{2000}{2001}\)\(\frac{2001-1}{2001}\)= 1 - \(\frac{1}{2001}\)
    \(\frac{2001}{2002}\)\(\frac{2002-1}{2002}\)= 1 - \(\frac{1}{2002}\)
    ta có \(\frac{1}{2001}\)\(\frac{1}{2002}\) =>  1 - \(\frac{1}{2001}\) <  1 - \(\frac{1}{2002}\)
    vậy  \(\frac{2000}{2001}\)\(\frac{2001}{2002}\)
21 tháng 4 2017

A<B

Mình đoán z

Mình đoán z

Mình đoán z

21 tháng 4 2017

nhưng mk cần các bạn giải thích hộ mk nha

23 tháng 5 2016

a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\);    \(\frac{46}{50}\)=1-\(\frac{4}{50}\)

Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)

Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)

 

23 tháng 5 2016

c.\(\frac{41}{91}\)=1-\(\frac{50}{91}\)=1-\(\frac{500}{910}\);    \(\frac{411}{911}\)=1-\(\frac{500}{911}\)

Vì \(\frac{500}{910}\)>\(\frac{500}{911}\)=>1-\(\frac{500}{910}\)<1-\(\frac{500}{911}\)=>\(\frac{41}{91}\)<\(\frac{411}{911}\)

19 tháng 4 2015

Ta có:

B = \(\frac{2000}{2001+2002}\)\(\frac{2001}{2001+2002}\)

Vì \(\frac{2000}{2001}\)\(\frac{2000}{2001+2002}\)

    \(\frac{2001}{2002}\)\(\frac{2001}{2001+2002}\)

=> \(\left(\frac{2000}{2001}+\frac{2001}{2002}\right)\)\(\left(\frac{2000}{2001+2002}+\frac{2001}{2001+2001}\right)\)

=> A>B

Vậy A>B

19 tháng 6 2016

sai đề rồi

24 tháng 9 2019

undefined

( Câu trả lời bằng hình ảnh )

24 tháng 9 2019

Tham khảo:

Violympic toán 7

26 tháng 3 2016

\(\frac{x+16}{2000}+1+\frac{x+15}{2001}+1=\frac{x+14}{2002}+1+\frac{x+13}{2003}+1\)

\(\frac{x+2016}{2000}+\frac{x+2016}{2001}=\frac{x+2016}{2002}+\frac{x+2016}{2003}\)

\(\frac{x+2016}{2000}+\frac{x+2016}{2001}-\frac{x+2016}{2002}-\frac{x+2016}{2003}=0\)

\(\left(x+2016\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(x-2016=0\)

\(x=2016\)