K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có BC^2=AB^2+AC^2

nen ΔABC vuông tại A

\(BD=\sqrt{2^2+9^2}=\sqrt{85}\left(cm\right)\)

9 tháng 5 2016

áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2-AB^2=AC^2\)

\(15^2-9^2=AC^2\)

\(144=AC^2\)

\(AC=12\)(cm)

b)Có BC<AC<AB

=>A<B<C

c) xét tam giác CAB và tam giác CAD có :

CA chung

DA=AB

 góc CAB= gócCAD=90 độ

=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)

=>CB=CD(2 cạnh tương ứng )

=>tam giác BCD cân

d) vì  A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)

có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)

Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)

Từ (1) =>CM=\(\frac{2}{3}\)CA

         =>CM=\(\frac{2}{3}\times7,5\)

        =>CM=5(cm) 

12 tháng 3 2023

a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)

\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm

b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)

\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm

25 tháng 3 2017

a, ta có:

         BC2=AB2+AC2

thay  152=92+AC2

        225=81+AC2

       AC2=144

       AC=12

  Vậy cạnh AC=12cm

 Mà AC > AB(vì 12>9)

=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)

b,ta có:BA=DA(vì A là trung điểm của BD)

xét tam giác BCA và tam giácDCA

có:BA=DA(C/m trên)

    góc BAC=góc DAC (=900)

    AC là cạnh chung

=>tam giác BCA=tam giác DCA(c.g.c)

=>BC=DC(2 cạnh t/ứng)

=>tam giác BDC cân tại C

mk chỉ làm đc thế thôi

ok

19 tháng 5 2016

hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:

a)  Xét tam giác ABC vuông ở A có:

AB2+AC2=BC2 (đ/l pytago)

=>AC2=BC2-AB2=152-92=144

=>AC=12(cm)

Vì AC>AB (12cm>9cm)

=>^ABC>^ACB (đ/l về góc đối diện.....)

b Vì AB _|_ AC (tam giác ABC vuông tại A)

mà AD là tia đối tia AB=>AD _|_ AC

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:

AC:cạnh chung

AB=AD (A là trung điểm của BD)

=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)

 

 

19 tháng 5 2016

a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2

152 = 92 +AC2

AC2 =152-92=144

AC=12 (cm)

Xét tam giác ABC: AC > AB (12 cm >9cm)

=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)

b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)

                   90*     + góc DAC = 180*

=> góc DAC =180*-90*=90*

=> tam giác ADC vuông tại A.

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:

AB = AD (A là trung điểm của BD)

AC là cạnh chung

=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)

=> BC = DC ( hai cạnh tương ứng)

=> tam giác BDC cân tại C.

c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.

   K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.

CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.

=> CM =2/3CA    

     CM =2/3.12

     CM = 8 (cm)

Vậy CM=8 cm

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

6 tháng 2 2022

RỒI J NỮA ??
KO CÓ cÂU Hỏi à

a) Xét ΔABM và ΔACB có 

\(\widehat{BAM}\) chung

\(\widehat{ABM}=\widehat{ACB}\)(gt)

Do đó: ΔABM\(\sim\)ΔACB(g-g)