Cho A={1-{2√a/(a+1)}} : {1/(√a+1) - 2√a/(a√a+√a+a+1)}
a, Rút gọn A
b, Tính A biết a=2000-2√1999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{x^2-x-2}{x^2-1}+\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(\Rightarrow A=\dfrac{x^2-x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-x-2x+x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-2x-x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x-2}{x+1}\)
\(b,A=\dfrac{3}{4}\\ \Rightarrow\dfrac{x-2}{x+1}=\dfrac{3}{4}\\ \Rightarrow4\left(x-2\right)=3\left(x+1\right)\\ \Rightarrow4x-8=3x+3\\ \Rightarrow4x-8-3x-3=0\\ \Rightarrow x-11=0\\ \Rightarrow x=11\)
\(c,\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Thay x=5 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{5-2}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)
Thay x=1 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{1-2}{1+1}=\dfrac{-1}{2}\)
a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)
\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)
\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)
b) \(A=-2\sqrt{a}>-6\)
\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)
c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)
\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)
ta có thể làm như sau: Bước 1: Rút gọn phần tử trong ngoặc đầu tiên: √a - 1 - 1 / √a = (√a * √a - √a - 1) / √a = (a - √a - 1) / √a Bước 2: Rút gọn phần tử trong ngoặc thứ hai: √a - 2 - √(a + 2) / √(a - 1) = (√a * √(a - 1) - 2 * √(a - 1) - √(a + 2)) / √(a - 1) = (a - √a - 2√(a - 1) - √(a + 2)) / √(a - 1) Bước 3: Thay các giá trị rút gọn vào biểu thức ban đầu: a = 1 / ((a - √a - 1) / √a) / (√a + 1 / ((a - √a - 2√(a - 1) - √(a + 2)) / √(a - 1))) Bước 4: Rút gọn biểu thức: a = √a * √(a - 1) / (a - √a - 1) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) Bước 5: Rút gọn thêm: a = √a * √(a - 1) / (a - √a - 1) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) Bước 6: Rút gọn thêm: a = (√a * √(a - 1))^2 / (a - √a - 1) * (√(a - 1))^2 / (a - √a - 2√(a - 1) - √(a + 2)) Bước 7: Rút gọn cuối cùng: a = (a(a - 1)) / ((a - √a - 1)(a - √a - 2√(a - 1) - √(a + 2)))
a.
\(A=\left(1-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)
\(=\left(\dfrac{1-\sqrt{a}}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\left(1-\sqrt{a}\right)}{a-1}=\dfrac{-2\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{-2}{\sqrt{a}+1}\)
b.
\(a-2\sqrt{2}\rightarrow\sqrt{a}=\sqrt{2}-1\)
\(=2-2\sqrt{2}+1\)
=\(\left(\sqrt{2}-1\right)^2\)
\(\rightarrow A=\dfrac{-2}{\sqrt{2}-1+1}=\dfrac{-1}{\sqrt{2}}=\sqrt{2}\)
=>\(A=\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1+\sqrt{a}-1}{a-1}\right)\left(a>0,a\ne1\right)\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2}{\sqrt{a}+1}\)
b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thế vào A
\(=>A=\dfrac{2}{\sqrt{\left(\sqrt{2}-1\right) ^2}+1}=\dfrac{2}{\sqrt{2}}\)
B=(2+1)(22+1)(24+1)...(22016+1)+1
B=(2-1)(2+1)(22+1)...(22016+1)+1
B=(22-1)(22+1)...(22016+1)+1
B=(24-1)(24+1)...(22016+1)+1
...........................
B=(22016-1)(22016+1)+1
B=(22016)2-1+1=42016
a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
a: \(A=\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{a+1}\cdot\dfrac{\sqrt{a}+1}{1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(a-1\right)^2-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}=\dfrac{a^2-2a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}\)
b: Khi \(a=2000-2\sqrt{1999}\) thì \(A=\dfrac{\left(1999-2\sqrt{1999}\right)^2-2\left(\sqrt{1999}-1\right)}{\left(2001-2\sqrt{1999}\right)\left(\sqrt{1999}-1+1\right)}\)
\(\simeq42,66\)