Tính lim \(\dfrac{5^n+2.3^n}{4.5^n+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\dfrac{\left(-3\right)^n-4.5^{n+1}}{2.4^n+3.5^n}=\lim\dfrac{\left(-3\right)^n+20.5^n}{2.4^n+3.5^n}=\lim\dfrac{\left(-\dfrac{3}{5}\right)^n+20}{2\left(\dfrac{4}{5}\right)^n+3}=\dfrac{0+20}{0+3}=\dfrac{20}{3}\)
\(\lim\dfrac{2^n-3^n+4.5^{n+2}}{2^{n+1}+3^{n+2}+5^{n+1}}=\lim\dfrac{2^n-3^n+100.5^n}{2.2^n+9.3^n+5.5^n}=\lim\dfrac{\left(\dfrac{2}{5}\right)^n-\left(\dfrac{3}{5}\right)^n+100}{2\left(\dfrac{2}{5}\right)^n+9\left(\dfrac{3}{5}\right)^n+5}=\dfrac{100}{5}=20\)
\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)
\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)
\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)
\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)
\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)
\(=\lim\dfrac{1.\dfrac{3^{n+1}-1}{3-1}}{6.3^n+2^n}=\lim\dfrac{3.3^n-1}{12.3^n+2.2^n}=\lim\dfrac{3-\left(\dfrac{1}{3}\right)^n}{12+2\left(\dfrac{2}{3}\right)^n}=\dfrac{3}{12}=\dfrac{1}{4}\)
\(\lim\dfrac{1+2.3^{n}-7^{n}}{a+5^{n}+a.7^{n-1}} =\lim\dfrac{(\dfrac{1}{7})^{n}+2.(\dfrac{3}{7})^{n}-1}{a.(\dfrac{1}{7})^{n}+(\dfrac{5}{7})^{n}+\dfrac{a}{7}} =\lim\dfrac{-1}{\dfrac{a}{7}} =\dfrac{-7}{a}\)
b) \(lim\dfrac{4^n}{2.3^n+4^n}=lim\dfrac{1}{2.\left(\dfrac{3}{4}\right)^n+1}=\dfrac{1}{1}=1\).
\(a=\lim\dfrac{17+\dfrac{3}{n}+\dfrac{4}{n^3}}{2+\dfrac{1}{n^2}}=\dfrac{17}{2}\)
1/...
2/ \(=\lim\dfrac{\dfrac{1}{n\sqrt{n}}-1}{4+\dfrac{1}{n^2\sqrt{n}}}=\dfrac{0-1}{4+0}=-\dfrac{1}{4}\) (chia cả tử-mẫu cho \(n^3\))
3/ \(=\lim\dfrac{3-\left(\dfrac{1}{4}\right)^n}{2.\left(\dfrac{3}{4}\right)^n+4\left(\dfrac{1}{4}\right)^n}=\dfrac{3-0}{2.0+3.0}=\dfrac{3}{0}=+\infty\) (chia tử mẫu cho \(4^n\))
4/ \(=\lim\dfrac{2.2^n+\dfrac{4}{3}.3^n}{1-\dfrac{1}{2}.2^n+3.3^n}=\lim\dfrac{2.\left(\dfrac{2}{3}\right)^n+\dfrac{4}{3}}{\left(\dfrac{1}{3}\right)^n-\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^n+3}=\dfrac{2.0+\dfrac{4}{3}}{0-\dfrac{1}{2}.0+3}=\dfrac{4}{9}\) (chia tử mẫu cho \(3^n\))
a)lim\(\dfrac{4-3^n}{2.3^n+2}\)=lim\(\dfrac{4.\dfrac{1^n}{3^n}-\dfrac{3^n}{3^n}}{2.\dfrac{3^n}{3^n}+2\dfrac{1^n}{3^n}}=\)\(lim\dfrac{4.(\dfrac{1}{3})^n-1}{2.1+2.(\dfrac{1}{3})^n}=\dfrac{4.0-1}{\dfrac{2+2.0}{ }}=\dfrac{-1}{2}\)
b) lim\(\dfrac{3^{n+1}-2^n}{2-2.3^n}=lim\dfrac{3^n.3-2^n}{2-2.3^n}=lim\dfrac{3.\dfrac{3^n}{3^n}-\left(\dfrac{2}{3}\right)^n}{2.\left(\dfrac{1}{3}\right)^n-2.\dfrac{3^n}{3^n}}=\dfrac{3.1-0}{2.0-2.1}=\dfrac{-3}{2}\)
\(lim\dfrac{\left(n+2\right)^{50}\left(n-3\right)^{80}}{\left(2n-1\right)^{40}\left(3n-2\right)^{45}}=lim\dfrac{\left(1+\dfrac{2}{n^{50}}\right)\left(1-\dfrac{3}{n^{35}}\right)\left(n-3\right)^{45}}{\left(2-\dfrac{1}{n^{50}}\right)\left(3-\dfrac{2}{n^{45}}\right)}=+\infty\)
\(lim\dfrac{4^n}{2.3^n+4^n}=lim\dfrac{1}{2.\left(\dfrac{3}{4}\right)^n+1}=\dfrac{1}{0+1}=1\)
\(lim\dfrac{3^n-2.5^n}{7+3.5^n}=lim\dfrac{\left(\dfrac{3}{5}\right)^n-2}{\dfrac{7}{5^n}+3}=\dfrac{0-2}{0+3}=\dfrac{-2}{3}\)
\(lim\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}=lim\dfrac{\left(\dfrac{4}{25}\right)^n-\left(\dfrac{1}{5}\right)^n}{\left(\dfrac{2}{5}\right)^{2n}+3}=\dfrac{0-0}{0+3}=0\)
\(lim\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}=lim\dfrac{\left(\dfrac{-3}{5}\right)^n+1}{2.\left(-\dfrac{4}{5}\right)^n+1}=\dfrac{0+1}{0+1}=1\)
1.
Nhớ rằng \(\lim _{x\to \infty}\frac{1}{x}=0\) và \(\lim _{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\) với \(g(x)\neq 0; \lim_{x\to a}g(x)\neq 0\)
Do đó:
\(\lim_{n\to \infty}\frac{(n+2)^{50}.(n-3)^{80}}{(2n-1)^{40}.(3n-2)^{45}}=\lim_{n\to \infty}\frac{n^{130}(\frac{n+2}{n})^{50}.(\frac{n-3}{n})^{80}}{n^{85}(\frac{2n-1}{n})^{40}.(\frac{3n-2}{n})^{45}}\)
\(=\lim_{n\to \infty}\frac{n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}}{(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}}\)
\(=\frac{\lim_{n\to \infty}[n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}]}{\lim_{n\to \infty}[(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}]}\)
\(=\frac{\lim_{n\to \infty}n^{45}.1^{50}.1^{80}}{2^{40}.3^{45}}=\frac{\infty}{2^{40}.3^{45}}=\infty\)
1: \(\lim\limits_{n->\infty}\dfrac{2n+1}{n+15}=\lim\limits_{n\rightarrow\infty}\dfrac{2+\dfrac{1}{n}}{1+\dfrac{15}{n}}=2\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{n+6}{2n-5}=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{6}{n}}{2-\dfrac{5}{n}}=\dfrac{1}{2}\)
Bài đâu ạ
Ko vào đc ạ