2n+2021 và 2n+2023 là số nguyên tố cùng nhau. Giúp mình. Mình cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
a) Gọi ƯCLN(3n+1,6n+1)=d
=> 3n+1 và 6n+1 chia hết chưa d
=> 2(3n+1) và 6n+1 chia hết chưa d
=>6n+2 và 6n+1 chia hết cho d
=>(6n+2)-(6n+1)=1 chia hết cho d
=>d=1
=> 3n+1 và 6n+1 nguyên tố cùng nhau
b, Gọi ƯCLN(2n+3,3n+4)=d
=>2n+3 và 3n+4 chia hết cho d
=>3(2n+3) và 2(3n+4) chia hết cho d
=>6n+9 và 6n+8 chia hết cho d
=>(6n+9)-(6n+8)=1 chia hết cho d
=>d=1
=>2n+3 và 3n+4 nguyên tố cùng nhau
mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;
ƯCLN (7;10) = 1
Ok để mình giúp bạn
Gọi d là ước chung lớn nhất của (2n+1, 2n+3)
=> 2n+1 chia hết cho d
2n+3 cũng chia hết cho d
Trừ đi => 2 chia hết cho d
=> d =1 hoặc 2
Nếu d=2 => 2n+1; 2n+3 chia hết cho 2
=> Vô lí do 2n+1; 2n+3 là 2 số lẻ
=> d=1
=> (2n+1; 2n+3)=1
=> 2n+1 và 2n+3 nguyên tố cùng nhau.
GỌI d LÀ UCLN CỦA (2n+1;2n+3)(d\(\in\)N*)
=>\(2n+1⋮d\)và\(2n+3⋮d\)
=>\(\left(2n+3-2n-1\right)⋮d\)
=>\(2⋮d\)
mà \(2n+1\)lẻ => d lẻ => d=1
=>\(2n+1\)và\(2n+3\)là 2 số nguyên tố cùng nhau
Gọi \(d=\left(2n+9;n+5\right)\)
\(\left\{{}\begin{matrix}2n+9⋮d\\n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+9⋮d\\2n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+10\right)-\left(2n+9\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> 2n+9 và n+5 nguyên tố cùng nhau
Vì 2n+1 là số lẻ
và 4n+4 là số chẵn
nên 2n+1 và 4n+4 là hai số nguyên tố cùng nhau
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM