Từ điểm M nằm ngoài (O) vẽ hai tiếp tuyến MA,MB với (O) tại A,B.Biết góc AMB=50o thì góc nội tiếp của (O;R) chắn cung nhỏ AB bằng:
A.75o B.65o C.45o D.1300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, mình nghĩ đề là OABM nhé
Xét (O) có MA ; MB lần lượt là tiếp tuyến với A;B là tiếp điểm
=> ^MAO = ^MBO = 900
Xét tứ giác OAMB có ^MAO + ^MBO = 1800
mà 2 góc này đối vậy tứ giác OAMB nt 1 đường tròn
Xét tam giác MAC và tam giác MDA có
^M _ chung
^MAC = ^MDA ( chắn cung AC )
Vậy tam giác MAC ~ tam giác MDA (g.g)
=> MA/MD=MC/MA => MA^2 = MD.MC
mà MA = MB ( tc tiếp tuyến cắt nhau )
Vậy MA . MB = MD . MC
c, bạn xem lại đề
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM⊥AB
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA
hay \(MA^2=MC\cdot MD\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)
Chọn B