Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6 (n thuộc N và n lớn hơn hoặc bằng 1)..
Chứng minh rằng : a+b+c+8 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=11...1:2n số 1 nên a=(10^2n - 1)/9
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9
c=66...6:n số 6 nên c=6*(10^n -1)/9
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9
=[ (10^n)^2 + 2*10^n(5+3) +64]/9
=[ (10^n)^2 + 2*8*10^n + 8^2]/9
= (10^n + 8 )^2/9
= [(10^n + 8 )/3]^2
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương
Đặ 111...11(n CS 1)=a=>10n=9a+1
a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a
b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1
c=666...66(nCS6)=6.111...11(nCS1)=6a
=> a+b+c+8=9a2+18a+9=(3a+3)2
P/s: Khó trình bày quá
Đặ 111...11(n CS 1)=a=>10n=9a+1
a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a
b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1
c=666...66(nCS6)=6.111...11(nCS1)=6a
=> a+b+c+8=9a2+18a+9=(3a+3)2
Ta có:
a+b+c+8
=111...1(2n c/s 1)+111...1(n+1 c/s1)+666...6(n chữ số 6)+8
=111...1(n-1 c/s 1)2888...8(n c/s 8)+8
=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96
Ta thấy:
362(1c/s3)=1296(1 c/s 1;0 c/s 8)
3362(2c/s 3)=112896(2 c/s 1;1c/s 8)
33362(3c/s 3)=11128896(3 c/s 1;2 c/s 8)
=>333...362(n-1 c/s 3)=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96
=>a+b+c+8 là số chính phương(ĐPCM)
`a=11...11`(2n số 1)
`b=11...11`(n+1 số 1)
`c=66...66`(n số 6)
`->a+b+c+8=11...11+11...11+66...66+8`
\(=\dfrac{10^{2n}-1}{9}+\dfrac{10^{n+1}-1}{9}+\dfrac{6\left(10^n-1\right)}{9}+\dfrac{72}{9}\\ =\dfrac{10^n-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\\ =\dfrac{\left(10^n\right)^2+10\cdot10^n+6\cdot10^n-6+70}{9}\\ =\dfrac{\left(10^n\right)^2+16\cdot10^n+64}{9}\\ =\left(\dfrac{10^n+8}{3}\right)^2\)
`->a+b+c+8` là số chính phương
`->đpcm`
tick giúp mình nha
Lời giải
Đặt k = 11...1(n chữ số 1).
Thì a = 11...1111(2n chữ số 1) = 11..100..0 + 11...11 = k(9k + 1) + k = 9k2 + 2k.
Tương tự, b = 10k + 1; c = 6k.
=> a + b + c + 8 = 9k2 + 2k + 10k + 1 + 6k + 8 = 9k2 + 18k + 9 = (3k + 3)2.
Vậy a + b + c + 8 là số chính phương.
Chứng minh lại
Ta có:
a + b + c + 8 = (9k2 + 2k) + (10k + 1) + (6k) + 8 = 9k2 + 18k + 9 = (3k + 3)2
Ta thấy rằng (3k + 3)2 là bình phương của số tự nhiên (3k + 3). Do đó, a + b + c + 8 là số chính phương.
Kết luận
Bằng cách đặt k = 11...1(n chữ số 1), ta có thể chứng minh được rằng a + b + c + 8 là số chính phương.