Giải phương trình \(x+\sqrt{5+\sqrt{x-1}}=6\) ta được nghiệm dạng \(x=\dfrac{a-\sqrt{b}}{c}\) với a, b, c là các số nguyên tố. Tính P = a + b+ c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này e rằng quá khó để tự luận do vấn đề cơ số
Nhưng tinh ý 1 chút thì giải trắc nghiệm đơn giản:
\(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}=\dfrac{x-1}{2\sqrt{x}}\)
Để ý rằng \(x-1-2\sqrt{x}=x-\left(2\sqrt{x}+1\right)\)
Do đó pt luôn có nghiệm thỏa mãn: \(x-2\sqrt{x}-1=0\Rightarrow x=3+2\sqrt{2}\)
Đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\left(y\ge-\dfrac{1}{2}\right)\).
Ta có hpt:
\(\left\{{}\begin{matrix}14y^2+14y=2x+1\\14x^2+14x=2y+1\end{matrix}\right.\)
\(\Rightarrow14\left(x^2-y^2\right)+16\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=\dfrac{-8}{7}\end{matrix}\right.\).
Đến đây thế vào là được.
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=y\ge0\)
\(\Rightarrow4x^2+12xy=27y^2\)
\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Dựa vào đây mà làm nhé : Câu hỏi của nhi anny - Toán lớp 9 - Học toán với OnlineMath
Note: \(\sqrt{\dfrac{1}{4x}+\dfrac{\sqrt{x}+e^x}{\sqrt{x}.e^{2x}}}=\sqrt{\dfrac{1}{4x}+\dfrac{1}{e^x.\sqrt{x}}+\dfrac{1}{e^{2x}}}=\sqrt{\left(\dfrac{1}{2\sqrt{x}}+\dfrac{1}{e^x}\right)^2}=\dfrac{1}{2\sqrt{x}}+\dfrac{1}{e^x}\)
Vấn đề bây giờ có lẽ đã quá đơn giản
ĐKXĐ: \(0\le x\le4\) ;\(x\ne2\)
\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{4-x}\right)}{x-2}=2x-3\)
\(\Leftrightarrow x+\sqrt{4x-x^2}=2x^2-7x+6\)
\(\Leftrightarrow2\left(4x-x^2\right)+\sqrt{4x-x^2}-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x-x^2}=-2\left(loại\right)\\\sqrt{4x-x^2}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow4x-x^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{7}}{2}\\x=\dfrac{4-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow abc\)
ĐKXĐ: \(x\ge1\)
\(x-1+\sqrt{5+\sqrt{x-1}}=5\)
Đặt \(\sqrt{x-1}=t\ge0\)
\(\Rightarrow t^2+\sqrt{t+5}=5\)
Đặt \(\sqrt{t+5}=u>0\Rightarrow u^2-t=5\)
\(\Rightarrow t^2+u=u^2-t\Leftrightarrow t^2-u^2+t+u=0\)
\(\Leftrightarrow\left(t+u\right)\left(t-u+1\right)=0\)
\(\Leftrightarrow t-u+1=0\) (do \(t>0;u>0\Rightarrow t+u>0\))
\(\Leftrightarrow t+1=\sqrt{t+5}\)
\(\Leftrightarrow t^2+2t+1=t+5\Leftrightarrow t^2+t-4=0\)
\(\Rightarrow t=\dfrac{-1+\sqrt{17}}{2}\)
\(\Rightarrow x=t^2+1=\dfrac{11-\sqrt{17}}{2}\)
giúp e ạ e cảm ơn
https://hoc24.vn/cau-hoi/cho-chop-sabcd-day-hinh-binh-hanh-m-la-trung-diem-sc-mat-anpha-chua-am-cat-sdsb-tai-ef-tinh-sdse.7474367749811