cho tam giác abc có chiều cao ah=2,5cm, bc=3,6cm. Tính diện tích tam giác abc. Biết diện tích tam giác ahc bằng 60% diện tích tam giác abc. tính diện tích tam giác ahc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)
nhìn đã thấy hoa mắt rồi còn làm gì nữa, ko muốn đọc đề tí nào
a. Ta có: \(BC^2=100
\)
\(AB^2+AC^2=100\)
Vì \(AB^2+AC^2=BC^2\left(=100\right)\)
Nên ABC vuông tại A (Pytago đảo)
b. Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lý 3- HTL ta có:
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)
=> AH=4,8
\(c.SinB=\dfrac{6}{10}=\dfrac{3}{5}=>B\cong37\)
\(SinC=\dfrac{8}{10}=\dfrac{4}{5}=>53\)
d. Ta có: Tam giác AHC vuông tại H
Áp đụng định lý Pytago vào tam giác ta được
\(HC^2=AC^2-AH^2\)
= 36-23,04=12,96
=>HC=3,6
\(SAHC=\dfrac{1}{2}\cdot AH\cdot HC=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\)
Diện tích tam giác ABC là:
\(2,5\times3,6:2=4,5\left(cm^2\right)\)
Diện tích tam giác AHC là:
\(4,5:100\times60=2,7\left(cm^2\right)\)
Đáp số:2,7\(cm^2\)
Diện tích hình tam giác ABC là:
3,6 x 2,5 : 2 = 4,5 ( cm² )
Diện tích hình tam giác AHC là:
4,5 : 100 x 60 = 2,7 ( m² )
Đáp số: 2,7m²