Cho HCN ABCD và CD=4cm, BC=3cm. Gọi H là hình chiếu của C trên BD
a) Tính BD
b) Tính CH
c) Tính DH
Giúp mình với, mình đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AH và DC là I.
AF song song với DI (cùng vuông góc với AD) (1)
\(\Delta ADI=\Delta BAE\left(g.c.g\right)\Rightarrow DI=AE\) ( 2 cạnh tương ứng )
Mà \(AE=AF\left(gt\right)\Rightarrow DI=AF\) (2)
Từ (1) và (2) \(\Rightarrow AFID\)là hình bình hành.
Mà \(\widehat{FAD}=90^0\Rightarrow AFID\) là hình chữ nhật.
Từ đó: FBCI là hình chữ nhật nên IB = CF (t/c hình chữ nhật)
Gọi O là giao điểm của FC và BI \(\Rightarrow O\) là trung điểm của FC và BI
\(\Delta BHI\) vuông tại B có HO là đường trung tuyến ứng với cạnh CF nên
\(HO=\frac{1}{2}BI\Rightarrow HO=\frac{1}{2}CF\)
\(\Delta CHF\)có đường trung tuyến HO = 1/2 CF nên \(\Delta CHF\) vuông tại H.
Vậy \(\widehat{CHF}=90^0\)
Mình chỉ hướng dẫn bước thôi. Bạn tự trình bày nhé
Mong bạn hiểu lời giải. Chúc bạn học tốt.
mik làm tắt thôi có gì bạn trình bày lại
a,trong hình thang ABCD cân thì 2 đường chéo AC=BD
và 2 cạnh bên bằng nhau AD=BC
mà DC chung=>\(\Delta ADC=\Delta BDC\left(c.c.c\right)\)
=>\(\angle\left(D1\right)=\angle\left(C1\right)\)\(=>\Delta ODC\) cân tại O=>OD=OC
mà \(AB//CD=>\left\{{}\begin{matrix}\angle\left(ABO\right)=\angle\left(D1\right)\\\angle\left(BAO\right)=\angle\left(C1\right)\end{matrix}\right.\)(so le trong)
\(=>\angle\left(ABO\right)=\angle\left(BAO\right)\)\(=>\Delta OAB\) cân tại O=>OA=OB
b, do \(\Delta OAB\) cân tại O có OM là trung tuyến nên cũng là đường cao
tương tự thì ON cũng là đường cao
\(=>\left\{{}\begin{matrix}OM\perp AB\\ON\perp CD\end{matrix}\right.\) mà \(AB//CD=>M;N;O\) thẳng hàng
a: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: CH=3*4/5=2,4cm
c: DH=DC^2/BD=4^2/5=3,2ccm