K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Ta có : \(\left(a+b\right)\left(a^2-ab+b^2\right)=a\left(a^2-ab+b^2\right)+b\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+b^2a+a^2b-ab^2+b^3\)

\(=a^3+\left(-a^2b+a^2b\right)+\left(b^2a-ab^2\right)+b^3\)

\(=a^3+b^3\)

Mà \(\left(a+b\right)\left(a^2-ab+b^2\right)\) chia hết cho 3

\(\Rightarrow a^3+b^3\)chia hết cho 32

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

$a^3+b^3=2(c^3-8d^3)$

$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$

$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$ 

Khi đó:

$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$

$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:

$a^3+b^3+c^3+d^3\vdots 3$

$3ab(a+b)\vdots 3$

$3cd(c+d)\vdots 3$

$3(a+b)(c+d)(a+b+c+d)\vdots 3$

Vậy: 

$(a+b+c+d)^3\vdots 3$

$\Rightarrow a+b+c+d\vdots 3$

29 tháng 7 2021

tại sao (a+b+c+d)3=(a+b)3+(c+d)3+3(a+b)(c+d)(a+b+c+d) đấy ạ?

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

29 tháng 8 2017

21 tháng 10 2021

Bài 3: 

a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)

b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=7^3-3\cdot12\cdot7\)

\(=343-252=91\)

b) Ta có: \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)

\(=\left(ab^2-cb^2\right)+\left(ca^2-c^2a\right)+\left(bc^2-ba^2\right)\)

\(=b^2\left(a-c\right)+ca\left(a-c\right)+b\left(c^2-a^2\right)\)

\(=\left(a-c\right)\left(b^2+ca\right)-b\left(a-c\right)\left(a+c\right)\)

\(=\left(a-c\right)\left(b^2+ca-ba-bc\right)\)

\(=\left(a-c\right)\left[b\left(b-a\right)+c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]\)

\(=\left(a-c\right)\left(b-a\right)\left(b-c\right)\)

10 tháng 6 2021

trời ơi cái qq gì í đây

21 tháng 1 2022

a+b+c=abc?? =))

21 tháng 1 2022

hờ e xíu

 

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

NV
26 tháng 3 2023

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Hay tam giác ABC đều

29 tháng 10 2021

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

29 tháng 10 2021

\(a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)