Tam giác ABC có O là giáo điểm của 3 đường trung trực. Trung trực cạnh BC cắt AB ở I và cắt tia đối tia AC ở J.
A) Chứng minh AB > AC
B)Chứng minh ∆IOB =∆IOC và góc IAO = góc ICO.
C) Chứng minh ∆JOB=∆JOC. Tính góc JAO + góc JBO = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
Mà AH là phân giác \(\widehat{A}\) (gt).
\(\Rightarrow\) AH là đường cao; AH là đường trung tuyến (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AH \(\perp\) BC; H là trung điểm của BC.
Xét tam giác EBH và tam giác ECH:
BH = CH (H là trung điểm của BC).
EH chung.
\(\widehat{EHB}=\widehat{EHC}\) \(\left(=90^o\right).\)
\(\Rightarrow\) Tam giác EBH = Tam giác ECH (c - g - c).
\(\Rightarrow\) BE = CE (2 cạnh tương ứng).
b) Xét tam giác ABC cân tại A: AH là phân giác \(\widehat{A}\) (gt).
\(\Rightarrow\) AH là đường trung trực của BC (Tính chất các đường trong tam giác cân).
a: Xét ΔBAM và ΔCAM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>MB=MC
b: ΔABC cân tại A
mà AI là đường phân giác
nên AI là trung trực của BC
a: XétΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
b: Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)
BE=CF
Do đó: ΔABE=ΔACF
Suy ra: AE=AF