Tìm GTNN của biểu thức Q= \(\dfrac{2x^2+2}{\left(x+1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
ĐKXĐ : \(x\ne\left\{1;0\right\}\)
a) \(P=\left(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)
\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)
\(P=\left(\dfrac{\left(x-1\right)\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{x^3-1}{x^3-1}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=1\cdot\dfrac{x^2+1}{2}\)
\(P=\dfrac{x^2+1}{2}\)
b) Vì \(x^2\ge0\forall x\)
\(\Rightarrow P\ge\dfrac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Mà ĐKXĐ \(x\ne0\)
=> ... đến đây ko biết làm :v
AI BIẾT LÀM HỘ ĐI
Cái này mk chưa học nên cx chưa rõ cách làm chính xác mong bạn thông cảm :)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
a) \(\dfrac{\left(x-1\right)^2}{x-2}=\dfrac{\left(x-2\right)^2+2\left(x-2\right)+1}{x-2}=x-2+2+\dfrac{1}{x-2}\ge2+2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}=4\)
GTNN là 4 khi x=3
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)
nên \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\dfrac{25}{16}\)
Dấu '=' xảy ra khi x=-1/2
Có \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)
\(A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy min \(A=\dfrac{25}{16}\Leftrightarrow x=\dfrac{-1}{2}\)
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)
\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)
c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)
=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)
Dấu '=' xảy ra khi (x-1)2=1
=>x-1=1 hoặc x-1=-1
=>x=0(loại) hoặc x=2(nhận)
Vậy: \(A_{min}=4\) khi x=2
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$
$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$
Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$