K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3B=1+1/3+...+1/3^2004

=>2B=1-1/3^2005

=>\(2B=\dfrac{3^{2005}-1}{3^{2005}}\)

=>\(B=\dfrac{3^{2005}-1}{3^{2005}\cdot2}< \dfrac{1}{2}\)

6 tháng 1 2023

         B  =      \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+ \(\dfrac{1}{3^{2024}}\)\(\dfrac{1}{3^{2005}}\)

        3B  = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+\(\dfrac{1}{3^{2004}}\)

    3B -B  = 1 - \(\dfrac{1}{3^{2005}}\)

          2B  = 1 - \(\dfrac{1}{3^{2005}}\)

           B  = ( 1 - \(\dfrac{1}{3^{2005}}\)):2

            B  =  \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{2005}}\) < \(\dfrac{1}{2}\) (đpcm)

 

2 tháng 6 2015

a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004

             B=    1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005

suy ra 2B=1-1/3^2005

    suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

suy ra B=1/2-1/3^2005/2 bé hơn 1/2

từ đấy suy ra B bé hơn 1/2

11 tháng 2 2018

Từng bài 1 thôi nhs!

a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005

3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004 

4A = 32005 + 1

=> 4A - 1 = 32005 là lũy thừa của 3

=> ĐPCM

14 tháng 6

đề có thiếu ko đó

A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004 

đặt B  =  23 + 24 + 25 + ...+ 22003 + 22004  

2B=  24 + 25 + 26 + ....+ 22004 + 22005 

2B-B= (  24 + 25 + 26 + ....+ 22004 + 22005  ) -  (   23 + 24 + 25 + ...+ 22003 + 22004 )

B  =   24 + 25 + 26 + ....+ 22004 + 22005     - 23 - 24 -  25 -  ...-  22003 -  22004

B  = 22005  - 23  

B =  22005  - 8 

=> A = 4 + B = 4 +  22005  - 8 = 22005 - 4 =     .....

14 tháng 1 2016

Ta có:3B\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+...+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}\)

B=\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+..+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}+\frac{1}{3}^{2005}\)

\(\Rightarrow\)2B=1-\(\frac{1}{3}^{2005}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}<\frac{1}{2}\)

\(\Rightarrow\)B<\(\frac{1}{2}\)

3 tháng 3 2016

\(\Rightarrow3B=3+\frac{1}{3^1}+\frac{1}{3^2}+....+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=\left(3+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2B=3-\frac{1}{3^{2005}}\Rightarrow B=\left(3-\frac{1}{3^{2005}}\right):2\)

\(\Rightarrow\left(3-\frac{1}{3^{2005}}\right):2<\frac{1}{2}\Rightarrow B<\frac{1}{2}\)

3 tháng 3 2016

3B=1+1/3+1/32+...+1/32004

3B-B=1-1/32005

2B=1-1/32005

B=1/2-1/(32005.2)

Vậy B <1/2

27 tháng 4 2017

Ta có :

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(2B=1-\frac{1}{3^{2005}}< 1\)

\(\Rightarrow\frac{2B}{2}=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{2}\)

6 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Leftrightarrow2B=3\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\) (Đpcm)

6 tháng 3 2017

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+..+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ \)

\(C=3B=1+\dfrac{1}{3}+..+\dfrac{1}{3^{2004}}\)

\(C-B=1-\dfrac{1}{3^{3005}}\)

\(B=\dfrac{1}{2}-\dfrac{1}{2.3^{2005}}< \dfrac{1}{2}\)

8 tháng 8 2016

Bài 1

a) 3+ 3+ 3+ 3= 34(1 + 3 + 3+ 33)\

b) a)A = 1 + 3 + 32 +......399 =(1 + 3 +  32 + 33 ) + ...+(396 + 397 + 398 + 399)

                                          =   (1 + 3 +  32 + 33 ) + .. +396(1 + 3 +  32 + 33 )

                                          = 40 + ... + 396 . 40 

                                          = 40 (1 + 3 +...+ 396) chia hết cho 40

8 tháng 8 2016

Bài 2 

a)

+)A chia hết cho 6

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^{2002}.30\)

\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6

+)A chia hết cho 31

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)

\(A=155+5^3.155+...+5^{2001}.155\)

\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31

+) A chia hết cho 156

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)

\(A=780+5^4.780+...+5^{2000}.780\)

\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156

b)B=165+2^15 chia hết cho 33

ta có 165 chia hết cho 33

mà 215 ko chia hết cho 33

vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.

30 tháng 1 2016

làm ơn tách ra giùm mk