phan tich thanh nhan tu: x3+y3+6xy+x+y-10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
\(x^2-y^2-x+3y-2=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)\)
\(< =>\left(x-\frac{1}{2}\right)^2-\left(y-\frac{3}{2}\right)^2\)
\(< =>\left(x-\frac{1}{2}+y-\frac{3}{2}\right)\left(x-\frac{1}{2}-y+\frac{3}{2}\right)=\left(x+y-2\right)\left(x-y+1\right)\)
a) \(x^2+4y^2+4xy\)
\(=x^2+2.x.2y+\left(2y\right)^2\)
\(=\left(x+2y\right)^2\)
b) \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x\)
\(=4xy\)
c) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x-1\right)\)
a) \(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\)
\(P=x^2-6xy+9y^2=\left(x-3y\right)^2\)
(Áp dụng 7 hằng đẳng thức đáng nhớ)
a) 3x^2 y - 6xy^2 = 3xy ( x - 2y)
b) 9 - ( x- y)^2 = ( 3 )^2 - ( x- y)^2
= ( 3 -x + y )( 3 + x + y )
a/ \(3x^2y-6xy^2\)\(=3xy\left(x-2y\right)\) ( đây là p2 đặt nhân tử chung )
b/9-(x -y )2 =( 3 -x +y ) ( 3 + x+y ) ( dùng hđt số 3 để giải )
a) \(2x^3+x^2-4x-12\)
\(=2x^3-4x^2+5x^2-10x+6x-12\)
\(=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+5x+6\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)