1)Tính tổng
a)-x2yz+12x2yz-10x2yz+x2yz
b)11xy2z3-6xy2z+20xy2z3
c)(92x3y+51x3y)-(105x3y-7x3y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`7x^2y^2 - 10x^2yz + 1 - 3x^2yz`
`= 7x^2y^2 + (-10x^2yz - 3x^2yz) + 1`
`= 7x^2y^2 - 13x^2yz + 1`
Bài 4:
b: \(=x^2z\left(-1+3-7\right)=-5x^2z=-5\cdot\left(-1\right)^2\cdot\left(-2\right)=10\)
c: \(=xy^2\left(5+0.5-3\right)=2.5xy^2=2.5\cdot2\cdot1^2=5\)
a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
a: 5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>A=(5^2023-1)/4
b: 6B=6^2+6^3+...+6^41
=>5B=6^41-6
=>B=(6^41-6)/5
c: 16C=4^4+4^6+...+4^16
=>15C=4^16-4^2
=>C=(4^16-4^2)/15
d: 9D=3^3+3^5+...+3^27
=>8D=3^27-3
=>D=(3^27-3)/8
\(\Leftrightarrow9A=3^3+3^5+...+3^{21}\\ \Leftrightarrow9A-A=3^3+3^5+...+3^{21}-3-3^3-3^5-...-3^{19}\\ \Leftrightarrow8A=3^{21}-3\Leftrightarrow A=\dfrac{3^{21}-3}{8}\)
`a)A=11x^4y^3z^2+20x^2yz-(4xy^2z-10x^2yz+3x^4y^3z^2)-(2008xyz^2+8x^4y^3z^2)`
`=11x^4y^3z^2-3x^4y^3z^2-8x^4y^3z^2+20x^2yz+10x^2yz-4xy^2z-2008xyz^2`
`=30x^2yz-4xy^2z-2008xyz^2`
`=2xyz(15x-2y-1004z)`
`=2xyz(1004z-1004z)`
`=0`
`#3107.101107`
1.
`a,`
\(A=1+3+3^2+3^3+...+3^{2012}\)
`3A = 3 + 3^2 + 3^3 + ... + 3^2013`
`3A - A = (3 + 3^2 + 3^3 + ... + 3^2013) - (1 + 3 + 3^2 + 3^3 + ... + 3^2012)`
`2A = 3 + 3^2 + 3^3 + ... + 3^2013 - 1 - 3 - 3^2 - 3^3 - ... - 3^2012`
`2A = 3^2013 - 1`
`=> A = (3^2013 - 1)/2`
Vậy, `A = (3^2013 - 1)/2`
`b,`
\(B=1+10+10^2+10^3+...+10^{2023}\)
`10B = 10 + 10^2 + 10^3 + ... + 10^2024`
`10 B - B = (10 + 10^2 + 10^3 + ... + 10^2024) - (1 - 10 + 10^2 + 10^3 + ... + 10^2023)`
`9B = 10 + 10^2 + 10^3 + ... + 10^2024 - 1 - 10^2 - 10^3 - ... - 10^2023`
`9B = 10^2024 - 1`
`=> B = (10^2024 - 1)/9`
Vậy, `B = (10^2024 - 1)/9.`
`a)A=1+3+3^2+3^3+...+3^2012`
`=>3A=3+3^2+3^3+...+3^2013`
`=>3A-A=2A=3^2013-1`
`=>A=(3^2013-1)/2`
`b)B=1+10+10^2+...+10^2024`
`=>10B=10+10^2+10^3+....+10^2025`
`=>10B-B=9B=10^2025-10`
`=>B=(10^2025-10)/9`
a )\(-x^2yz+12x^2yz-10x^2yz+x^2yz\)
\(=\left(-1+12-10+1\right)x^2yz\)
\(=2x^2yz\)
b ) \(11xy^2z^3-6xy^2z+20xy^2z^3\)
\(=\left(11xy^2z^3+20xy^2z^3\right)-6xy^2z\)
\(=31xy^2z^3-6xy^2z\)
c ) \(\left(92x^3y+51x^3y\right)-\left(105x^3y-7x^3y\right)\)
\(=143x^3y-98x^3y\)
\(=45x^3y\)