\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{21.25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)
\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(=2100\left(1-\frac{1}{25}\right)\)
\(=2100\cdot\frac{24}{25}\)
\(=2016\)
\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\frac{24}{25}\)
\(A=2016\)
a) \(=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{61.64}\)
\(=3\left(\frac{1}{1}-\frac{1}{64}\right)\)
\(=\frac{189}{64}\)
b) \(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(=\frac{1}{1}-\frac{1}{25}\)
\(=\frac{24}{25}\)
c) Chưa học tới
b)1/1.5+1/5.9+1/9.13+...+1/21.25
=1/4.(4/1.5+4/5.9+4/9.13+4/21.25)
=1/4.(4-4/5+4/5-4/9+4/9-4/13+...+4/21-4/25)
=1/4.(4-4/25)
=1/4.(100/25-4/25)
=1/4.96/25
=24/25
\(P=\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{197.201}\)
\(P=\frac{3}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{197.201}\right)\)
\(P=\frac{3}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}+\frac{1}{13}+...+\frac{1}{197}-\frac{1}{201}\right)\)
\(P=\frac{3}{4}.\left(\frac{1}{1}-\frac{1}{201}\right)\)
\(P=\frac{3}{4}.\left(\frac{201}{201}-\frac{1}{201}\right)\)
\(P=\frac{3}{4}.\frac{200}{201}\)
\(P=\frac{50}{67}\)
Vậy \(P=\frac{50}{67}\)
\(P=\frac{3}{1\cdot5}+\frac{3}{5\cdot9}+...+\frac{3}{197\cdot201}\)
\(=3\cdot\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+...+\frac{1}{197\cdot201}\right)\)
\(=\frac{3}{4}\cdot\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{197\cdot201}\right)\)
\(=\frac{3}{4}\cdot\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{201}\right)\)
\(=\frac{3}{4}\cdot\left(\frac{1}{1}-\frac{1}{201}\right)\)
\(=\frac{3}{4}\cdot\left(\frac{201-1}{201}\right)\)
\(=\frac{3}{4}\cdot\frac{200}{201}\)
\(\Rightarrow B=\frac{50}{67}\)
3/1*5+3/5*9+3/9*13+.....+3/3993*3997+3/3997*4001
=1/3(1-1/5+1/5-1/9+1/9-1/13+....+1/3993-1/3997+1/3997-1/4001)
=1/3(1-1/4001)
=4000/12003
k nha
= 3/4(1-1/5+1/5-1/9+1/9-1/13+...+1/3993-1/3997+1/3997-1/4001)
=3/4(1-1/4001)
=3000/4001
\(A=3\times\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{101}-\frac{1}{105}\right)\)
\(A=3\times\left(1-\frac{1}{105}\right)\)
\(A=3\times\frac{104}{105}\)
\(A=\frac{104}{35}\)
- A ở trên giữa các phân số là dấu " + " nha mấy bạn !
Giải:
Ta có công thức sau:
\(\frac{k}{a.b}=\frac{1}{a}-\frac{1}{b}\) với b - a = k hoặc a - b = k
Lắp vào biểu thức A, ta có:
\(A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.14}+...+\frac{4}{2005.2009}\\ =\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{2001}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2009}\)
\(=1+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2009}\\ =1-\frac{1}{2009}\\ =\frac{2009-1}{2009}\\ =\frac{2008}{2009}\)
Vậy \(A=\frac{2008}{2009}\)
Chúc bạn học tốt!
\(x+\frac{3}{5.9}+\frac{3}{9.13}+\frac{3}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(\Leftrightarrow x+3\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}.\frac{8}{45}=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{2}{15}=-\frac{37}{45}\)
\(\Leftrightarrow x=-\frac{43}{45}\)
\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+......+\frac{3}{21.25}\)
\(=\frac{3}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{21.25}\right)\)
\(=\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{21}-\frac{1}{25}\right)\)
\(=\frac{3}{4}\left(1-\frac{1}{25}\right)\)
\(=\frac{3}{4}.\frac{24}{25}\)
\(=\frac{18}{25}\)
\(4A=3-\frac{1}{5}+\frac{3}{5}-\frac{3}{9}+\frac{3}{9}-\frac{3}{13}+...+\frac{3}{21}-\frac{3}{25}\)\(\frac{3}{25}\)
\(4A=3-\frac{3}{25}\)
\(4A=\frac{72}{25}\)
\(A=\frac{18}{25}\)
k minh ha