K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Ta thấy tam giác ACD và tam giác BCD có chung đáy cd , chiều cao bằng nhau và bằng chiều cao hình thang ABCD . Nên Sacd=Sbcd. Suy ra Saod=Sboc

b) cho diện tích abo=a thì chắc mình mới làm được nhé....

Xét tam giác aob và cod có

aob=cod (đối đỉnh), abo=cdo(so le trong do ab//cd)

Suy ra 2 tam giác này đồng dạng

=> (Ao/oc)^2=Saob/Scod=a/b

Xét tam giác aod và cdo chung đường cao hạ từ d xuống ac. Suy ra Saod/Scod=ao/co= căn (a/b)

=> Saod= căn (a/b) * b= căn (ab)

 

 

 

9 tháng 4 2021

Kết quả đúng ạ mà mik có cách ngắn hơn rồi, cảm ơn bạn đã giúp ạ😄

29 tháng 8 2017

26 tháng 4 2017

Đáp án C

A B C D = 1 2 ⇒ C D → = − 1 2 A B → . Vậy  V I ; − 1 2 : C D → → A B →

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.

2 tháng 6 2018

Kẻ AH DC; OK DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH = 2 S A B C D A B + C D = 2.48 4 + 8 = 8  (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

O C O A = C D A B = 8 4 = 2 ⇒ O C O A + O C = 2 2 + 1 ⇒ O C A C = 2 3

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

O K A H = O C A C = 2 3  => OK = 2 3 AH => OK = 2 3 .6 = 4(cm)

Do đó S C O D = 1 2 OK.DC = 1 2 . 16 3 .8 = 64 3 c m 2

Đáp án: A

12 tháng 5 2017

Kẻ AH DC; OK DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH = 2 S A B C D A B + C D = 2.36 4 + 8 = 6  (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

O C O A = C D A B = 8 4 = 2 ⇒ O C O A + O C = 2 2 + 1 ⇒ O C A C = 2 3

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

O K A H = O C A C = 2 3 => OK = 2 3 AH => OK = 2 3 .6 = 4(cm)

Do đó S C O D = 1 2 OK.DC = 1 2 .4.8 = 16cm2

Đáp án: C