Cho P/số A = \(\frac{8n+193}{4n+3}\).Tìm n thuộc Z để :
a, A là số tự nhiên
b, A là PS tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{n+3}\)
=>n+3 thuộc Ư(187)
n+3 | 1 | -1 | 17 | -17 | 187 | -187 |
n | -2 | -4 | 14 | -20 | 184 | -190 |
mk nhầm
4n+3 thuộc Ư(187)
4n+3 | 1 | -1 | 17 | -17 | -187 | 187 |
n | -2 | -1 | 3,5 loại | -5 | -47,5 loại | 46 |
Cho p/s M=8n+193/4n+3
a) Tim số tự nhiên để M là số tự nhiên
b) Tìm số tự nhiên n để M là p/s tối giản
a) Ta có : A = 8n + 193 / 4n+3 = ( 8n + 6 / 4n+ 3 ) + ( 187 / 4n + 3 ) = 2 + ( 187 / 4n + 3 )
Để A là số tự nhiên thì 187 / 4n+3 cũng phải là số tự nhiên
=> 187 chia hết cho 4n + 3 hay 4n+3 thuộc Ư(187)= { 1; 17;187}
* 4n+3 = 1 =>n=-1/2 ( loại )
* 4n+3 = 17 => n= 7/2 ( loại )
* 4n+3 =187 => n= 46
Vậy n=46
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
cũng dễ hôi ak bạn
a, 187 là bội của 4n +3 rồi tìm n
a) Ta có :\(A=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A có giá trị nguyên\(\Leftrightarrow\)\(\frac{187}{4n+3}\)có giá trị nguyên
\(\Rightarrow\)\(4n+3\inƯ\left(187\right)=1;11;17;187\)
Ta có bảng sau :
=>với \(n\in\){2;46} thì A có giá trị là số tự nhiên