K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2023

\(đk:x\ne1\\ \dfrac{x^2+5x}{3x^2-6x+3}:\dfrac{7x+35}{6x-6}\\ =\dfrac{x\left(x+5\right)}{3\left(x^2-2x+1\right)}:\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{x\left(x+5\right)}{3\left(x-1\right)^2}\times\dfrac{6\left(x-1\right)}{7\left(x+5\right)}\\ =\dfrac{2x}{7\left(x-1\right)}\)

2 tháng 1 2023

\(đk:x\ne1\)

\(\dfrac{x^2+5}{3x^2-6x+3}.\dfrac{7x+35}{6x-6}\\ =\dfrac{x^2+5}{3\left(x^2-2x+1\right)}.\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{x^2+5}{3\left(x-1\right)^2}.\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{7\left(x^2+5\right)\left(x+5\right)}{18.\left(x-1\right)^3}\)

a: \(\Leftrightarrow\dfrac{3x-2}{\left(x-2\right)\left(x-10\right)}-\dfrac{4x+3}{\left(x+8\right)\left(x-2\right)}=\dfrac{8x+11}{\left(x-10\right)\left(x+8\right)}\)

=>(3x-2)(x+8)-(4x+3)(x-10)=(8x+11)(x-2)

=>3x^2+24x-2x-16-4x^2+40x-3x+30=8x^2-16x+11x-22

=>-x^2+59x+14-8x^2+5x+22=0

=>-9x^2+54x+36=0

=>x^2-6x-4=0

=>\(x=3\pm\sqrt{13}\)

b: \(\Leftrightarrow\dfrac{2x-5}{\left(x+9\right)\left(x-4\right)}-\dfrac{x-6}{\left(x+7\right)\left(x-4\right)}=\dfrac{x+8}{\left(x+9\right)\left(x+7\right)}\)

=>(2x-5)(x+7)-(x-6)(x+9)=(x+8)(x-4)

=>2x^2+14x-5x-35-x^2-9x+6x+54=x^2+4x-32

=>x^2+6x+19=x^2+4x-32

=>2x=-51

=>x=-51/2

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

a: \(x-3\left(2x-6\right)=21-\left(5x+3\right)\)

=>\(x-6x+18=21-5x-3\)

=>18=18(luôn đúng)

=>\(x\in R\)

b: \(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2=2\left(x+1\right)\)

=>\(x^2-4-x^2+2x-1=2x+2\)

=>2x-5=2x+2

=>-7=0(vô lý)

=>\(x\in\varnothing\)

c: \(\dfrac{9x+4}{6}=1-\dfrac{3x-5}{9}\)

=>\(\dfrac{3\left(9x+4\right)}{18}=\dfrac{18}{18}-\dfrac{2\left(3x-5\right)}{18}\)

=>3(9x+4)=18-2(3x-5)

=>27x+12=18-6x+10

=>27x+12=-6x+28

=>33x=16

=>\(x=\dfrac{16}{33}\left(nhận\right)\)

d: ĐKXĐ: \(x\notin\left\{2;5\right\}\)

\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(6x+1+5\left(x-5\right)=3\left(x-2\right)\)

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>\(x=\dfrac{9}{4}\left(nhận\right)\)

26 tháng 1

a: x−3(2x−6)=21−(5x+3)

=>x−6x+18=21−5x−3

=>18=18(luôn đúng)

=>x∈R

b: (x−2)(x+2)−(x−1)2=2(x+1)

=>x2−4−x2+2x−1=2x+2

=>2x-5=2x+2

=>-7=0(vô lý)

=>x∈∅

c: 9x+46=1−3x−59

=>3(9x+4)18=1818−2(3x−5)18

=>3(9x+4)=18-2(3x-5)

=>27x+12=18-6x+10

=>27x+12=-6x+28

=>33x=16

=>x=1633(nhận)

d: ĐKXĐ: x∉{2;5}

6x+1x2−7x+10+5x−2=3x−5

=>6x+1(x−2)(x−5)+5x−2=3x−5

=>6x+1+5(x−5)=3(x−2)6

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>x=94(nhận)

19 tháng 1 2022

a. \(3x\left(2x+1\right)=6x^2+3x\)

b. \(\left(12x^3-18x^2+6x\right):6x=2x^2-3x+1\)

 

c. \(\dfrac{7x+6}{5x-1}+\dfrac{8x-9}{5x-1}=\dfrac{15x-3}{5x-1}=\dfrac{3\left(5x-1\right)}{5x-1}=3\)

19 tháng 1 2022

\(a.3x\left(2x+1\right)\\ =6x^2+3x\)

\(b.\left(12x^3-18x^2+6x\right):6x\\ =2x^2-3x+1\)

\(c.\dfrac{7x+6}{5x-1}+\dfrac{8x-9}{5x-1}=\dfrac{7x+6+8x-9}{5x-1}=\dfrac{15x-3}{5x-1}=\dfrac{3\left(5x-1\right)}{5x-1}=3\)

30 tháng 4 2021

a. 2x\(^2\)-8=0

2x\(^2\)=8

x\(^2\)=4

x=2

b.3x\(^3\)-5x=0

x(3x\(^2\)-5)=0

\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)

 

1 tháng 5 2021

c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)

đặt t=x\(^2\) (t>0)

ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)

thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm

t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4

khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1

khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2

vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2

d)3x\(^2\)+6x-9=0

thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm

x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)

e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)  (ĐK: x#5; x#2 )

\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)

⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0

⇔-7x\(^2\) - 6x + 46=0

Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0

\(\sqrt{\Delta'}=\sqrt{62}\)

vậy pt có 2 nghiệm phân biệt

x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)

x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)

vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......

câu g làm tương tự câu c

 

 

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks

20 tháng 4 2021

PT 2 

\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))

\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Rightarrow2x^2-3x+6=0\)

=> PT vô nghiệm.