K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Ap dung BDT Cauchy -Schwarz ta co:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\le\left(x+y\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\le\left(x+y\right)^2\)

\(\Leftrightarrow2\le\left(x+y\right)^2\Leftrightarrow T\le2\)

Vay TMax=2

16 tháng 4 2016

Áp dụng BĐT Cô-si:

X4+1\(\ge\) 2X2   Dấu = xảy ra <=> X=1

Y4 + 1\(\ge\)  2Y2  Dấu = xảy ra <=> Y=1

=> P\(\ge\)  2X2 . 2Y2+2013

        \(\ge\)   4X2Y2 +2013 

Vì 4X2Y2\(\ge\)    0

=> P    \(\ge\)    2013

Vậy Min P= 2013 tại X=Y=1

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

11 tháng 1 2021

26 tháng 2 2017

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$

15 tháng 7 2019

Đáp án đúng : C