Cho các số thự x,y thỏa mãn x2 + y2 = 1.
Tìm giá trị lớn nhất của (x+y)2.
P/s: Mình tìm ra kết quả là 2 rồi, nhưng mình cần lời giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si:
X4+1\(\ge\) 2X2 Dấu = xảy ra <=> X=1
Y4 + 1\(\ge\) 2Y2 Dấu = xảy ra <=> Y=1
=> P\(\ge\) 2X2 . 2Y2+2013
\(\ge\) 4X2Y2 +2013
Vì 4X2Y2\(\ge\) 0
=> P \(\ge\) 2013
Vậy Min P= 2013 tại X=Y=1
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Ap dung BDT Cauchy -Schwarz ta co:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\le\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\le\left(x+y\right)^2\)
\(\Leftrightarrow2\le\left(x+y\right)^2\Leftrightarrow T\le2\)
Vay TMax=2