Phân tích đa thức thành nhân tử:
(x2011 - x2010 + 1)(x2011 - x2010 + 2) - 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1+x2+x3+...+x2011=0
x1+x2=x3+x4=...=x2009+x2010=2
(x1+x2)+(x3+x4)+...+(x2009+x2010)+x2011=0
2+2+2+...+2+x2011=0
2.1005+x2011=0
2010+x2011=0
x2011=0-2010
x2011=-2010
Xong rồi, kick mình nha, như lời hứa ở trong tin nhắn của bạn!
Đặt biểu thức là A
Ta có \(x_1+x_2+x_3+..+x_{2009}+x_{2010}+x_{2011}=0\)
\(< =>\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+..+\left(x_{2008}+x_{2009}+x_{2010}\right)+x_{2011}=0\)
\(< =>2+2+2+..+2+x_{2011}=0\)
Biểu thức trên có tất cả số số 2 là: \(\frac{2010-1+1}{3}=670\)(số)
Nên ta có: \(2.670+x_{2011}=0\)
\(< =>1340+x_{2011}=0\)
\(< =>x_{2011}=-1340\)
Ta có:
\(Q\left(x\right)=\left[x^{1010}\left(x+3\right)-1\right]^{2012}=\left[x^{1010}.0-1\right]^{2012}=\left(-1\right)^{2012}=1\)
ố đề có bị sai không em sao x1+x2+x3=x4+x5+x6
Hay ý em là X1+X2+X3=X4+X5+X6
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x2011 = 0. Vậy x2011 = -2010
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x 2011 = 0. Vậy x 2011 = -2010
ta có
\(x_1+x_2+x_3+..+x_{2011}=0\)
\(\left(x_1+x_2\right)+\left(x_3+x_4\right)+..+\left(x_{2009}+x_{2010}\right)+x_{2011}=0\)
\(\Leftrightarrow2+2+..+2+x_{2011}=0\Leftrightarrow2.1005+x_{2011}=0\)
\(\Leftrightarrow x_{2011}=-2010\)
đặt x2011-x2010+1=t thì đa thức trở thành:
t(t+1)-20=t2+t-20=(t2-5t)+(4t-20)=t(t-5)+4(t-5)=(t-5)(t+4)(*)
thay t= x2011-x2010+1 vào (*) ta có:
( x2011-x2010+1-5)( x2011-x2010+1+4)=( x2011-x2010-4)( x2011-x2010+5)
=>( x2011-x2010+1)( x2011-x2010+2)-20=( x2011-x2010-4)( x2011-x2010+5)